Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
Answer:
r₂ = 0.2 m
Explanation:
given,
distance = 20 m
sound of average whisper = 30 dB
distance moved closer = ?
new frequency = 80 dB
using formula

I₀ = 10⁻¹² W/m²
now,



to hear the whisper sound = 80 dB



we know intensity of sound is inversely proportional to square of distances



r₂ = 0.2 m
Answer:
Video
Explanation:
Hope this helps! If it does, drop a 5 star!
Answer:
a. stay the same for very long
Explanation:
It is rare for any motion to stay the same for a very long time. The force applied on a body causes changes in the magnitude of motion.
- For motion to remain constant, there must not be a net force acting on the body
- All the forces on the body must be balanced.
- This is very hard to come by.
- Motion changes very frequently.