1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sp2606 [1]
3 years ago
14

PLEASE HELP I AM ON A TIMED QUIZ

Physics
2 answers:
Leona [35]3 years ago
5 0
The answer is D! Hope this helps , I wish you best of luck on your quiz!
White raven [17]3 years ago
3 0

Answer:

d

Explanation:

I believe its d I thinm

You might be interested in
The 1.18-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
sattari [20]

Answer:

 k = 11,564 N / m,   w = 6.06 rad / s

Explanation:

In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;

 let's apply the equilibrium condition at this point

                 

Axis y

          W_{y} - Fr = 0

          Fr = k y

let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal

             sin 46 = W_{y} / W

             W_{y} = W sin 46

     

 we substitute

           mg sin 46 = k y

           k = mg / y sin 46

If the length of the bar is L

          sin 46 = y / L

           y = L sin46

 

we substitute

           k = mg / L sin 46 sin 46

           k = mg / L

for an explicit calculation the length of the bar must be known, for example L = 1 m

           k = 1.18 9.8 / 1

           k = 11,564 N / m

With this value we look for the angular velocity for the point tea = 30º

let's use the conservation of mechanical energy

starting point, higher

          Em₀ = U = mgy

end point. Point at 30º

         Em_{f} = K -Ke = ½ I w² - ½ k y²

          em₀ = Em_{f}

          mgy = ½ I w² - ½ k y²

          w = √ (mgy + ½ ky²) 2 / I

the height by 30º

           sin 30 = y / L

           y = L sin 30

           y = 0.5 m

the moment of inertia of a bar that rotates at one end is

          I = ⅓ mL 2

          I = ½ 1.18 12

          I = 0.3933 kg m²

let's calculate

          w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)

          w = 6.06 rad / s

7 0
3 years ago
Who is your favorite fictional character and why? Who is your favorite non-fictional person and why?
Andru [333]
My favorite fictional character is definitely Eren from Attack on Titan because he is strong, caring, and protects the people he loves

My least favorite is Bakugo from My Hero Academia because he is toxic, lowdown, and has severe anger issues.
7 0
2 years ago
A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the
yaroslaw [1]

Answer:

The speed of the ball 1.0 m above the ground is 44 m/s (Answer A).

Explanation:

Hi there!

To solve this problem, let´s use the law of conservation of energy. Since there is no air resistance, the only energies that we should consider is the gravitational potential energy and the kinetic energy. Because of the conservation of energy, the loss of potential energy of the ball must be compensated by a gain in kinetic energy.

In this case, the potential energy is being converted into kinetic energy as the ball falls (this is only true when there are no dissipative forces, like air resistance, acting on the ball). Then, the loss of potential energy (PE) is equal to the increase in kinetic energy (KE):

We can express this mathematically as follows:

-ΔPE = ΔKE

-(final PE - initial PE) = final KE - initial KE

The equation of potential energy is the following:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the ball.

g = acceleration due to gravity.

h = height.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass of the ball.

v = velocity.

Then:

-(final PE - initial PE) = final KE - initial KE          

-(m · g · hf - m · g · hi) = 1/2 · m · v² - 0     (initial KE = 0 because the ball starts from rest)  (hf = final height, hi = initial height)

- m · g (hf - hi) = 1/2 · m · v²

2g (hi - hf) = v²

√(2g (hi - hf)) = v

Replacing with the given data:

√(2 · 9.8 m/s²(101 m - 1.0 m)) = v

v = 44 m/s

The speed of the ball 1.0 m above the ground is 44 m/s.

3 0
3 years ago
What is an example of frequency
emmasim [6.3K]

'Frequency' is a word that often confuses some people ... for no good reason.
It just means "frequent-ness" or "often-ness" ... how often something happens.

The SI unit of frequency is the Hertz (Hz).  Hz means 'per second'.
So  " 13 Hz "  means  13 per second.

Here are examples of frequency:

-- 780 kilohertz (on your AM radio dial)
-- 98.7 Megahertz (on your FM dial)
-- 5.8 Gigahertz
-- twice a day
-- three per week
-- every 6 months

6 0
3 years ago
Read 2 more answers
Explain the increase in pressure of a gas when its volume is decreased at constant<br> temperature.
Dmitriy789 [7]

Answer:

For a gas held at constant temperature, we can apply Boyle's law, which states that the product between the gas pressure and its volume is constant:

PV=const.

where

P is the pressure

V is the volume

As we see from the equation, P and V are inversely proportional to each other: this means that when the volume is decreased, the pressure increases, and vice-versa. The reason for that is that when the volume is decreased, the gas is compressed, so the molecules of the gas come closer to each other, so they collide more frequently with the wall of the container, exerting therefore a greater pressure.

7 0
3 years ago
Other questions:
  • What is the advantage of having nuclear physics?
    11·2 answers
  • Power =<br> work+ time<br> work<br> time<br> time<br> work<br> Fxd<br> Ext<br> Fxd
    11·1 answer
  • A car is cruising at a steady speed of 35 mph. Suddenly, a cuddly puppy runs out into the road. The driver takes 1.7 seconds to
    14·1 answer
  • What happens to the density of a fluid as the substance gains thernal energy
    15·1 answer
  • What does a virus look like
    11·2 answers
  • Dry air is primarily composed of nitrogen. In a classroom demonstration, a physics instructor pours 3.6 L of liquid nitrogen int
    10·1 answer
  • What does the w mean in w=fxd
    8·2 answers
  • A construction worker dropped a brick from a high scaffolding. How fast was? a. How fast was the brick moving after 4.0 s of fal
    6·1 answer
  • The centre of mass of a metre rule is at the 50cm mark. state what is meant by Centre of mass​
    5·1 answer
  • Calculate the weight of the wooden cube.<br>thanks i will rate you 5 star after answer is given...​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!