Answer:Videos
For example, when oxygen and hydrogen react to produce water, one mole of oxygen ... These conversion factors state the ratio of reactants that react but do not tell ... In a typical chemical equation, an arrow separates the reactants on the left ... For example, to determine the number of mol
Answer : The energy removed must be, 29.4 kJ
Explanation :
The process involved in this problem are :

The expression used will be:
![Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{fusion}]+[m\times c_{p,s}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=Q%3D%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2B%5Bm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%5D%2B%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released for the reaction = ?
m = mass of benzene = 94.4 g
= specific heat of solid benzene = 
= specific heat of liquid benzene = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![Q=[94.4g\times 1.73J/g.K\times (279-322)K]+[94.4g\times -125.6J/g]+[94.4g\times 1.51J/g.K\times (205-279)K]](https://tex.z-dn.net/?f=Q%3D%5B94.4g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28279-322%29K%5D%2B%5B94.4g%5Ctimes%20-125.6J%2Fg%5D%2B%5B94.4g%5Ctimes%201.51J%2Fg.K%5Ctimes%20%28205-279%29K%5D)

Negative sign indicates that the heat is removed from the system.
Therefore, the energy removed must be, 29.4 kJ
Answer:
At equilibrium the rate of the forward reaction is equal to the rate of the backward reaction.
When the product of a reaction at equilibrium is increased the equilibrium will shift left or to the reactant side. As a result the excess product will get converted to reactant. This is in accordance to Le Chatelier's principle.
Le Chatelier's principle states that when a system is subjected to stress the equilibrium will shift in a direction to minimize effect of the stress.
Thus the products added to the system at equilibrium will make the equilibrium shift to the reactant side, the rate of the reverse or backward reaction will increase.
Explanation:
Hope This Helps Amigo!
B) 1 Zn+ 2HCl--> 1 ZnCl2+1H2
This is balanced