Find your answer in the explanation below.
Explanation:
PV = nRT is called the ideal gas equation and its a combination of 3 laws; Charles' law, Boyle's law and Avogadro's law.
According to Boyle's law, at constant temperature, the volume of a gas is inversely proportional to the pressure. i.e V = 1/P
From, Charles' law, we have that volume is directly proportional to the absolute temperature of the gas at constant pressure. i.e V = T
Avogadro's law finally states that equal volume of all gases at the same temperature and pressure contain the same number of molecules. i.e V = n
Combining the 3 Laws together i.e equating volume in all 3 laws, we have
V = nT/P,
V = constant nT/P
(constant = general gas constant = R)
V = RnT/P
by bringing P to the LHS, we have,
PV = nRT.
Q.E.D
Answer:
Ionic bonds hold charged particles in solid NaCl together, such that they are unable to move or conduct electricity.
Explanation:
Consider an electric current that flows through a conductor: charge moves in a uniform direction from one end of the conductor towards the other.
Thus, there are two conditions for a substance to conduct electricity:
- The substance shall contain charged particles, and
- These charged particles shall be free to move across the substance.
A conductor of electricity shall meet both requirements.
Now, consider the structure of solid NaCl
. NaCl is an ionic compound. It contains an ocean of oppositely charged ions:
- Positive
ions, and - Negative
ions.
Ions carry charge. Thus, solid NaCl contains charged particles and satisfies the first condition.
Inside solid NaCl
, electrostatic attractions ("ionic bonds") between the oppositely charged ions hold these ions in rigid ionic lattices. These ions are unable to move relative to each other. As a result, they cannot flow through the solid to conduct electricity. Under solid state, NaCl is unable to satisfy the second condition.
As a side note, melting NaCl into a liquid breaks the ionic bonds and free the ions from the lattice. Liquid NaCl is a conductor of electricity.
Answer : The balanced chemical equation is,

Explanation :
Rules for the balanced chemical equation in basic solution are :
- First we have to write into the two half-reactions.
- Now balance the main atoms in the reaction.
- Now balance the hydrogen and oxygen atoms on both the sides of the reaction.
- If the oxygen atoms are not balanced on both the sides then adding water molecules at that side where the more number of oxygen are present.
- If the hydrogen atoms are not balanced on both the sides then adding hydroxide ion
at that side where the less number of hydrogen are present. - Now balance the charge.
The half reactions in the basic solution are :
Reduction :
......(1)
Oxidation :
.......(2)
Now multiply the equation (1) by 2 and then added both equation, we get the balanced redox reaction.
The balanced chemical equation in a basic solution will be,

His strict imposition of autocratic rule was supported by his appointment by the King, who otherwise was not directly involved.
Explanation:
Andros’ imposition of Episcopalian worship in the Old South Meeting house, Boston his vigorous enforcement of the Navigation Acts.
He had earned the enmity of the local populace by enforcing the restrictive Navigation Acts.
He had infuriated Puritans in Boston by promoting the Church of England, which was rejected by many Nonconformist New England colonists.
When news of the overthrow of James II (1688) reached Boston, the colonists revolted, deposing Andros and imprisoning him.
His requirement that landholders take out new land patents and his limitations upon town meetings and rights of local taxation all aroused sharp resentment in colonial America.
Both create energy. Both require atoms.
Fission is ripping the atoms apart, fusion is forcing them together. Fission takes less energy because it's easier to rip unstable atoms apart but pushing two atoms that have similar charges together is extremely hard. Fission is currently mainstream on earth, but fusion is known for taking place within stars.