1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
7

Question 1 of 10

Physics
1 answer:
Marianna [84]3 years ago
6 0

Answer:

Option D. ²²²₉₀Th

Explanation:

Let the unknown be ⁿₘZ. Thus, the equation becomes:

²²⁶₉₂U —> ⁴₂He + ⁿₘZ

Next, we shall determine n, m and Z. This can be obtained as follow:

For n:

226 = 4 + n

Collect like terms

226 – 4 = n

222 = n

n = 222

For m:

92 = 2 + m

Collect like terms

92 – 2 = m

90 = m

m = 90

For Z:

ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th

Therefore, the complete equation becomes:

²²⁶₉₂U —> ⁴₂He + ⁿₘZ

²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th

Thus, the unknown is ²²²₉₀Th

You might be interested in
Which statement best compares a scientific theory and an opinion?
Furkat [3]

Answer: c opinion is something ppl just suggest but a theory needs proof before it is confirmed

8 0
2 years ago
Sammy squirrel is steering his boat at a heading of 327 degree at 18mph. The current is flowing at 4mph at a heading of 60 degre
Tanya [424]

Answer:

  • 59.97 º at 18.23 mph

Explanation:

To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.

To add the two vectors analytically you decompose each vector into their vertical and horizontal components.

<u>1. 18 mph 327º</u>

  • Horizontal component: 18 mph × cos (327º) = 15.10 mph

  • Vertical component: 18 mph × sin (327º) = - 9.80 mph

  • Vector notation:

       15.10\hat i-9.80\hat j

<u>2. 4 mph 60º</u>

  • Horizontal component: 4 mph × cos (60º) = 2.00 mph

  • Vertical component: 4 mph × sin (60º) = 3.46 mph

  • Vector notation:

       2.00\hat i+3.46\hat j

<u>3. Addition:</u>

You add the corresponding components:

15.10\hat i-9.80\hat j+2.00\hat i+3.46\hat j\\ \\ 17.10\hat i-6.34\hat j

To find the magnitude use Pythagorean theorem:

  • \sqrt{17.1^2+6.34^2}= 18.23

<u>4. Direction:</u>

Use the tangent ratio:

  • tan(\alpha )=opposite/adjacent=3.46/2.00=1.73

Find the inverse:

  • arctan (1.73) ≈ 59.97º
5 0
3 years ago
A projectile is launched at a 30° angle relative to the
maksim [4K]

Answer:

The answer is 56

Explanation:

6 0
2 years ago
Read 2 more answers
Red blood cells can be modeled as spheres of 6.53 μm diameter with −2.55×10−12 C excess charge uniformly distributed over the su
yKpoI14uk [10]

Complete Question

Red blood cells can be modeled as spheres of 6.53 μm diameter with −2.55×10−12 C excess charge uniformly distributed over the surface. Find the electric field at the following locations, with radially outward defined as the positive direction and radially inward defined as the negative direction. The permittivity of free space ????0 is 8.85×10−12 C/(V⋅m). What is the electric field

E⃗ 1 inside the cell at a distance of 3.05 μm from the center?

E⃗ 2 Just inside the surface of the cell

E⃗ 3 Just outside the surface of the cell

E⃗ 4 At a point outside the cell 3.05 μm from the surface

Answer:

E⃗ 1

      0 V/m

E⃗ 2

      0 V/m

E⃗ 3

         E_3 =  2.153 *10^{9} \  V/m

E⃗ 4

E_4 =  5.754 *10^ {8} \  V/m

Explanation:

From the question we are told that

The diameter is d =  6.53 \mu m  = 6.53*10^{-6}\  m

The charge is Q =  -.2.55 *10^{-12} \  C

The permittivity of free space is \epsilon_o  =  8.85* 10^{-12}\  C / V.m

The distance considered is d =  3.05 \mu m  =  3.05 *10^{-6} \ m

Generally the electric field inside the cell at a distance of 3.05 μm from the center is

0 V/m

This because there is no electric field felt inside the cell according Gauss the cell is taken as a point charge

Generally the electric field just inside the surface of the cell is 0 V/m

This because there is no electric field felt inside the cell according Gauss the cell is taken as a point charge

Generally the electric field just outside the cell is mathematically represented as

E_3 =  \frac{ k  *  |Q|}{ r^2 }

Here k is the coulomb constant with value

k  =   9*10^{9}\ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}

r is the radius of the sphere which is mathematically as

r =  \frac{d}{2} =   \frac{6.53*10^{-6}}{2}  = 3.265 *10^{-6} \  m

E_3 =  \frac{ 9*10^{9}  *  |-2.55 *10^{-12} |}{ [3.265 *10^{-6} ]^2 }

E_3 =  2.153 *10^{9} \  V/m

Generally the electric field at a point outside the cell 3.05 μm from the surface is mathematically represented as

E_4 =  \frac{ k  *  |Q|}{ R^2 }

Here R is mathematically represented as

R  =  3.265 *10^{-6} +  3.05 *10^{-6}

=>       R  =  6.315 *10^{-6}

So

E_4 =  \frac{ 9*10^{9}  *  |-2.55 *10^{-12} |}{ [ 6.315 *10^{-6} ]^2 }

E_4 =  5.754 *10^ {8} \  V/m

3 0
2 years ago
The first artificial satellite to orbit the Earth was Sputnik I, launched October 4, 1957. The mass of Sputnik I was 83.5 kg, an
9966 [12]

Answer:

-4.941*10^8J.

Explanation:

To solve this exercise it is necessary to take into account the concepts related to gravitational potential energy, as well as the concept of perigee and apogee of a celestial body.

By conservation of energy we know that,

\Delta U = \Delta_{perogee}-\Delta_{Apogee}

Where,

U= \frac{-GmM_e}{r}

Replacing

\Delta U = \frac{-GmM_e}{r_p}- \frac{-GmM_e}{r_a}

\Delta U = GmM_e (\frac{1}{r_A}-\frac{1}{r_p})

Our values are given by,

m = 85.5Kg

M_e = 5.97*10^{24}Kg

r_A = 7330Km

r_p = 6610Km

G = 6.67*10^{-11}Nm^2/Kg^2

Replacing at the equation,

\Delta U = (6.67*10^{-11})(85.5)(5.97*10^{24}) (\frac{1}{7330}-\frac{1}{6610})

\Delta U = -4.941*10^8J

Therefore the Energy necessary for Sputnik I as it moved from apogee to perigee was -4.941*10^8J.

4 0
3 years ago
Other questions:
  • Vince is baking a cake. He pours flour and sugar into an empty bowl. The substance in the bowl is a(n) __________.
    12·2 answers
  • If you speed up from rest to 12m/s in 3 seconds, what is your acceleration?
    9·2 answers
  • Light with wavelength 633 nm is incident on a 3.00-μm-wide slit.Part AFind the angular width of the central peak in the diffract
    8·1 answer
  • HELP ME PLZ 30 POINT AND A MARK
    6·1 answer
  • A positive charge of 6.0 × 10-4 C is in an electric field that exerts a force of 4.5 × 10-4 N on it. What is the strength of the
    6·2 answers
  • What did Rutherford’s model of the atom include that Thomson’s model did not have?
    15·2 answers
  • Chromosomes from the mother control whether a child is male or female. Please select the best answer from the choices provided.
    5·2 answers
  • A mouse ran 100 centimeters in
    5·2 answers
  • FILL IN THE BLANKS!
    6·1 answer
  • A force of 9.6 N acts on a 5.1 kg object for 8.2 s. Calculate the object's change in velocity (in m/s).​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!