Answer:
The mouse runs faster to have the same kinetic energy as the elephant.
Explanation:
Note from the equation given, mass (m) is directly proportional to KE. This means an elephant with more mass will have more KE, therefore, for the mouse to compensate, it has to run faster because its KE is smaller because of its small mass. If both run at the same speed, the elephant would have thousands of times more kinetic energy than the mouse. So the mouse has to run faster so that its speed compansates for its smaller weight.
2m/s^2, this is because F=ma, meaning a is also equal to F/m. The car applies 1500N in one direction and outside sources apply a total of -500N, meaning the 500kg car is moving forward with a total of 1000N of force. Taking the total 1000N and dividing it by 500kg gives you and acceleration of 2m/s^2. Hope this helps!
Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
Answer: 90 m/s
Explanation:
Given
mass of racecar 
velocity of racecar 
mass of still honeybadger 
after collision race car is traveling at a speed of 
conserving linear momentum
![Mu+m\times0=Mv_1+ mv_2\quad[v_2=\text{velocity of honeybadger after colllision}]](https://tex.z-dn.net/?f=Mu%2Bm%5Ctimes0%3DMv_1%2B%20mv_2%5Cquad%5Bv_2%3D%5Ctext%7Bvelocity%20of%20honeybadger%20after%20colllision%7D%5D)

