The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
Chlorine (Cl) forms a salt when it is combined with a metal. This element belongs in <span>halogens.
</span>
Answer:
Answer is B.
Explanation:
Hydrogen bonds forms when hydrogen atom is attracted towards oxygen atom of other water. A proton is shared by two ion electrons pair in which oxygen atom is partially negatively charged while hydrogen atom is partially positively charged.
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
<u>Answer:</u> The mass of ice is 
<u>Explanation:</u>
We are given:
Area of Antarctica =
(Conversion factor:
)
Height of Antarctica with ice = 7500 ft.
Height of Antarctica without ice = 1500 ft.
Height of ice = 7500 - 1500 = 6000 ft =
(Conversion factor: 1 ft = 30.48 cm)
To calculate mass of ice, we use the equation:

We are given:
Density of ice = 
Volume of ice = Area × Height of ice = 
Putting values in above equation, we get:

Hence, the mass of ice is 