1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
5

Which statement best describes why the Milky Way is shaped a certain way?

Physics
1 answer:
Sladkaya [172]3 years ago
7 0
This is the answer hope it will help you
You might be interested in
Kinetic energy is greatest when a roller coaster
mr Goodwill [35]
Hey Dave... you need to learn and I want you to improve I believe it to be at the bottom of the hill. Please read your siht homie
5 0
3 years ago
) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note tha
vaieri [72.5K]

(a) 0.0021 s, 2926.5 rad/s

The frequency of the B note is

f= 466 Hz

The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s

The angular frequency instead is given by

\omega = 2\pi f

And substituting

f = 466 Hz

We find

\omega = 2\pi (466 Hz)=2926.5 rad/s

(b) 20 Hz, 125.6 rad/s

In this case, the period of the sound wave is

T = 50.0 ms = 0.050 s

So the frequency is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz

While the angular frequency is given by:

\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s

(c) 4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s

The minimum angular frequency of the light wave is

\omega_1 = 2.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s

The maximum angular frequency of the light wave is

\omega_2 = 4.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s

(d) 2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s

In this case, the frequency is

f=5.0 MHz = 5.0 \cdot 10^6 Hz

So the period in this case is

T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6  Hz}=2.0 \cdot 10^{-7} s

While the angular frequency is given by

\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s

7 0
3 years ago
A straight segment of a current-carrying wire has a current element IL where I = 2.70 A and L = 3.20 cm i + 4.30 cm j. The segme
myrzilka [38]

The component of the force in negative z-direction is -0.144 N.

The given parameters;

  • <em>current in the wire, I = 2.7 A</em>
  • <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
  • <em>magnetic filed, B = 1.24 i</em>

The force on the segment of the wire is calculated as follows;

F = ILBsin(\theta)

where;

  • <em>θ is the angle wire and magnetic field</em>

<em />

The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.

The angle between the wire and the magnetic field is calculated as follows;

\theta = tan^{-1} (\frac{y}{x} )\\\\\theta = tan^{-1} (\frac{4.3}{3.2} )\\\\\theta = 53.3 \ ^0

The magnitude of the wire length is calculated as follows;

|l | = \sqrt{3.2^2 + 4.3^2} = 5.36 \ cm = 0.0536 \ m

The component of the force in negative z-direction is calculated as;

F_z = -ILB sin(\theta)\\\\F_z = -2.7 \times 0.0536 \times 1.24 \times  sin(53.3)\\\\F_z = -0.144 \ N

Thus, the component of the force in negative z-direction is -0.144 N.

Learn more here:brainly.com/question/22719779

6 0
3 years ago
Which scenario involves kinetic energy transforming into potential energy? A. a book lying on a shelf B. a train traveling at a
NeX [460]
The answer is C.

The Kinetic energy which was exerted and experience pulling the string of a bow is kept as a potential energy at the end of the arrow in contact with the string. Once release from aim at stationary position the potential energy is again transformed.
6 0
4 years ago
An AC generator consists of eight turns of wire, each of area 0.0775 m2 , and total resistance of 8.53 Ω. The loop rotates in th
Bad White [126]

Answer:

44.08 Volt

Explanation:

N = 8, A = 0.0775 m^2, R = 8.53 ohm, B = 0.222 T, f = 51 Hz

e0 = N B A w

e0 = 8 x 0.222 x 0.0775 x 2 x 3.14 x 51

e0 = 44.08 Volt

3 0
3 years ago
Other questions:
  • How would you find force of the ping pong ball rolling down the track?
    9·1 answer
  • As a box is pushed 30 meters across a horizontal floor by a constant horizontal force of 25 newtons, the kinetic energy of the b
    14·1 answer
  • On which factor does the inertia of rest depends​
    5·1 answer
  • Water at the top of Horseshoe Falls (part of Niagara Falls)
    6·1 answer
  • You drop a small ball, and then a second small ball. When you drop the second ball, the distance between them is 3 cm. What stat
    15·1 answer
  • An object moves with a constant speed of 20 m/s on a circular track of radius 100 m. What is the tangential acceleration of the
    13·1 answer
  • You kick a soccer ball with a speed of 31 m/s at an angle of 50 degrees. How long does it take the ball to reach the top of its
    10·1 answer
  • When you push an object, it pushes back with an equal and opposite force
    9·1 answer
  • Plz help I will give brainly to the correct answer
    12·1 answer
  • How is a sound wave made by plucking a guitar string?.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!