1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
3 years ago
14

A model rocket is launched straight upward with an initial speed of 57.0 m/s. It accelerates with a constant upward acceleration

of 3.00 m/s2 until its engines stop at an altitude of 140 m. (a) What can you say about the motion of the rocket after its engines stop? This answer has not been graded yet. (b) What is the maximum height reached by the rocket? m (c) How long after liftoff does the rocket reach its maximum height? s (d) How long is the rocket in the air? s
Physics
1 answer:
Julli [10]3 years ago
4 0

Answer:

(a) The motion of rocket is in upward direction and reaches to maximum height then the rocket starts falling freely.

(b) The maximum height attained by the rocket from the ground is 348.65 m

(c) The time taken by the rocket to maximum height after lift off is 8.85 s.

(d) The total time taken by the rocket in air is 17.3 second.

Explanation:

u = 57 m/s, a = 3 m/s^2, h = 140 m

let the rocket attains a velocity v after covering 140 m and it takes t time to reach upto 140 m.

Use III equation of motion

V^2 = u^2 + 2a h

v^2 = 57^2 + 2 x 3 x 140

v = 63.95 m/s

Now use I equation of motion

v = u + at

t = (63.95 - 57) / 3 = 2.32 s

(a) The motion of rocket is in upward direction and reaches to maximum height then the rocket starts falling freely.

(b) Let H be the maximum height reached by the rocket after the engine stops.

Use III equation of motion

v^2 = u^2 + 2aH

here, v = 0, u = 63.95 m/s, a = - 9.8 m/s^2

0 = 63.95^2 - 2 x 9.8 x H

H = 208.65 m

The maximum height attained by the rocket from the ground is h + H = 140 + 208.65 = 348.65 m

(c) Let t' be the time in which rocket reaches to maximum height after engine is stopped.

Use I equation of motion

v = u + a t'

0 = 63.95 - 9.8 x t'

t' = 6.53 s

The time taken by the rocket to maximum height after lift off is t + t' = 2.32 + 6.53 = 8.85 s.

(d) let t'' be the time taken by the rocket to fall freely

Use II equation of motion

H' = ut'' + 1/2 gt''^2

Here, H' = 348.65 m, u = 0

348.65 = 0 + 0.5 x 9.8 x t''^2

t''^ = 8.44 s

The total time taken by the rocket in air is t + t' + t'' = 2.32 + 6.53 + 8.44 = 17.3 second.

You might be interested in
An LC circuit is built with a 20 mH inductor and an 8.0 PF capacitor. The capacitor voltage has its maximum value of 25 V at t =
Margaret [11]

Answer:

a) the required time is 0.6283 μs

b) the inductor current is 0.5 mA

Explanation:

Given the data in the question;

The capacitor voltage has its maximum value of 25 V at t = 0

i.e V_m = V₀ = 25 V

we determine the angular velocity;

ω = 1 / √( LC )

ω = 1 / √( ( 20 × 10⁻³ H ) × ( 8.0 × 10⁻¹² F) )

ω = 1 / √( 1.6 × 10⁻¹³  )

ω = 1 / 0.0000004

ω = 2.5 × 10⁶ s⁻¹

a) How much time does it take until the capacitor is fully discharged for the first time?

V_m =  V₀sin( ωt )

we substitute

25V =  25V × sin( 2.5 × 10⁶ s⁻¹ × t )

25V =  25V × sin( 2.5 × 10⁶ s⁻¹ × t )

divide both sides by 25 V

sin( 2.5 × 10⁶ × t ) = 1

( 2.5 × 10⁶ × t ) = π/2

t = 1.570796 / (2.5 × 10⁶)

t = 0.6283 × 10⁻⁶ s

t = 0.6283 μs

Therefore, the required time is 0.6283 μs

b) What is the inductor current at that time?

I(t) = V₀√(C/L) sin(ωt)

{ sin(ωt) = 1 )

I(t) = V₀√(C/L)

we substitute

I(t) = 25V × √( ( 8.0 × 10⁻¹² F ) / ( 20 × 10⁻³ H ) )

I(t) = 25 × 0.00002

I(t) = 0.0005 A

I(t) = 0.5 mA

Therefore, the inductor current is 0.5 mA

8 0
3 years ago
If a boy with 50kg run in 3m/s what is his velocity
stepladder [879]

His velocity is 3 m/s in the direction in which he is running in. which.

6 0
3 years ago
Read 2 more answers
Choose the scenario in which the sound frequency of the waves is higher.
mrs_skeptik [129]

Answer:

B) the sound source moves towards you at 100 m/sec

Explanation:

The Dopper Effect is a phenomenon that occur when there is relative motion between an observer and a source of a wave. When this situation occurs, there is an apparent shift in frequency of the wave, as observed by the observer.

The apparent frequency observed by the observer is given by

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the original frequency of the wave

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if moving towards the source of the wave, negative otherwise)

v_s is the velocity of the source (negative if moving towards from the observer, positive otherwise)

In this problem, we want to find the scenario in which the sound frequency is higher.

We see that in all 4 scenarios, the sound source is moving: this means we have to find the scenario in which the denominator of the equation is smaller.

First of all, we notice the sound source moves towards the observer, v_s is negative, so the denominator is higher: this means that the correct option must be either A or B.

Also, we notice that since v_s is negative, a value larger in magnitude will mean a smaller denominator: therefore, the correct answer will be

B) the sound source moves towards you at 100 m/sec

Since this situation will make the denominator of the formula the smallest possible.

5 0
2 years ago
A spring is used as part of a lift system and follows Hooke's law. If the spring is
salantis [7]

Answer:

1.05m or 105cm

Explanation:

Using the hooke's law equation as follows;

F = –k.x

Where;

F = force (N)

x = extension length (m)

k = constant of proportionality (N/m)

According to the information given in this question;

Displacement (x) = 85cm = 85/100 = 0.85m

Force = 12500N

Using F = kx, we find the proportionality constant

k = F/x

K = 12500/0.85

K = 14705.8N/m.

Also, since K = 14705.8N/m, the displacement (x), when the force increases to 15500N is;

F = kx

x = F/k

x = 15500/14705.8

x = 1.05m or 105cm

6 0
3 years ago
Which would likely demagnetize a magnetized iron nail?
olga2289 [7]
The answer to this question is dropping it on a hard surface.
8 0
3 years ago
Other questions:
  • Match these items.
    11·2 answers
  • Which term names a large collection of stars, often billions, grouped together in the universe? A. supernova B. nebula C. solar
    5·2 answers
  • How does the current model of the atom differ from<br> j j thomas model
    8·1 answer
  • The slope of a position-time graph can be used to find the moving object’s
    15·1 answer
  • If the voltage output of a digital manifold absolute pressure (MAP)sensor is 2 volts, the approximate engine vacuum is _______ i
    12·1 answer
  • A skateboarder wants to cross a large playground and notices that there are large shapes painted on its asphalt surface. One sha
    7·1 answer
  • Why is random sampling and random assignment in experimental research important?
    15·1 answer
  • What is wheel. and axle? Explain its structure with the help of a diagram​
    5·1 answer
  • Which terrestrial planet exhibits retrograde rotation?.
    6·1 answer
  • Constructive interference of two coherent waves will occur if the path difference is:___.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!