Answer:
16 ohms
Explanation:
V=
I
⋅
R
where, V is the net potential difference in the circuit, I is the current in the circuit and R is the net resistance of the circuit.
In this case, V
=
240 volts, I
=
15 amperes.
240
=
15
⋅
R
⇒
R
=
240/
15
=
16 ohms
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity
Rocket fuel will and smoke will emit from the thrusters.
Answer:
Verb. Load with too great a burden or cargo.
"Both boats were overloaded and low in the water"
Noun. An excessive load or amount.
"an overload of stress"
Explanation:
Similar words are strain, excess, and overburden.
Have a good day and stay safe!
Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain
