We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Answer:
Electrons are located in specific orbit corresponding to discrete energy levels
Explanation:
In Bohr's model of the atom, electron orbit the nucleus in specific levels, each of them corresponding to a specific energy. The electrons cannot be located in the space between two levels: this means that only some values of energy are possible for the electrons, so the energy levels are quantized.
A confirmation of Bohr's model is found in the spectrum of emission of gases. In fact, when an electron jumps from a higher energy level to a lower energy level, it emits a photon whose energy is exactly equal to the difference in energy between the two levels: since the energy levels are discrete, this means that the emitted photons cannot have any value of wavelength, but also their wavelength will appear as a discrete spectrum. This is exactly what it is observed in the spectrum of emission of gases.
Answer:
The value of resistance when power is 1100 watts =
= 50 ohms
Explanation:
Power
= 2200 Watts
Resistance
= 25 ohms
Power
= 1100 Watts
Resistance
= we have to calculate
Given that the power in an electric circuit varies inversely with the resistance
⇒ P ∝ 
⇒
= 
⇒
= 
⇒
= 50 ohms
This is the value of resistance when power is 1100 watts.
The Richter Scale<span> is not commonly </span>used<span> anymore, except for small </span>earthquakes<span>recorded locally, for which ML and Mblg are the only </span>magnitudes<span> that can be measured. For all other </span>earthquakes<span>, the </span>moment magnitude scale<span> is a more accurate measure of the </span>earthquake<span> size.</span>
Answer: 16N
Explanation:
Given that:
mass of box M= 2 kg
Initial speed V1 = 4 m/s
Final speed V2 = 8 m/s
Time taken T= 0.5 s
Average strength of this force F = ?
Now, recall that Force is the rate of change of momentum per unit time
i.e Force = momentum / time
Hence, F = M x (V2 - V1)/T
F = 2kg x (8 m/s - 4 m/s) / 0.5s
F = 2kg x (4 m/s / 0.5s)
F = 2kg x 8 m/s/s)
F = 16N
Thus, the average strength of this
force is 16 newton.