1) Zn + 2 HCl = ZnCl2 + H2 ( <span>single replacement )
2) </span>2 NaCl + F2 = 2 NaF + Cl2 ( <span>single replacement )
3) </span>2 AlBr3 + 3 K2SO4 = 6 KBr + Al2(SO4)3 ( <span>double replacement )
4) </span>2 K + MgBr2 = 2 KBr + Mg ( <span>single replacement )
Answer 3
hope this helps!</span>
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.
1) Calculate the number of moles of O2 (g) in 300 cm^3 of gas at 298 k and 1 atm
Ideal gas equation: pV = nRT => n = pV / RT
R = 0.0821 atm*liter/K*mol
V = 300 cm^3 = 0.300 liter
T = 298 K
p = 1 atm
=> n = 1 atm * 0.300 liter / [ (0.0821 atm*liter /K*mol) * 298K] = 0.01226 mol
2) The reaction of a metal with O2(g) to form an ionic compound (with O2- ions) is of the type
X (+) + O2 (g) ---> X2O or
2 X(2+) + O2(g) ----> X2O2 = 2XO or
4X(3+) + 3O2(g) ---> 2X2O3
In the first case, 1 mol of metal react with 1 mol of O2(g); in the second case, 2 moles of metal react with 1 mol of O2(g); in the third, 4 moles of X react with 3 moles of O2(g)
So, lets probe those 3 cases.
3) Case 1: 1 mol of metal X / 1 mol O2(g) = x moles / 0.01226 mol
=> x = 0.01226 moles of metal X
Now you can calculate the atomic mass of the hypotethical metal:
1.15 grams / 0.01226 mol = 93.8 g / mol
That does not correspond to any of the metal with valence 1+
So, now probe the case 2.
4) Case 2:
2moles X metal / 1 mol O2(g) = x / 0.01226 mol
=> x = 2 * 0.01226 = 0.02452 mol
And the atomic mass of the metal is: 1.15 g / 0.02452 mol = 46.9 g/mol
That is similar to the atomic mass of titanium which is 47.9 g / mol and whose valece is 2+.
4) Case 3
4 mol meta X / 3 mol O2 = x / 0.01226 => x = 0.01226 * 4 / 3 = 0.01635
atomic mass = 1.15 g / 0.01635 mol = 70.33 g/mol
That does not correspond to any metal.
Conclusion: the identity of the metallic element could be titanium.
Covalent bonding!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The atomic structure of the acetic acid is:
H O
l l
H –
C – C – O – H
l
H
We can see from the structure that there are 2 interior
atoms, and these are all Carbon atoms.
The geometry is:
Tetrahedral on First Carbon
Trigonal Planar on Second Carbon