Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
It magnifies light received from distant objects.
The ammonium salt of acetic acid is the reaction product of acetic acid and ethylamine at room temperature
<h3 /><h3>What is acetic acid ?</h3>
Acetic acid is a monofunctional carboxylic acid containing two carbon atoms. It acts as a protein solvent, food acidity regulator, antibacterial food preservative. It is a conjugate acid of an acetate.
Acetic acid is used in the production of acetic anhydride, cellulose acetate, vinyl acetate monomer, acetic ester, chloroacetic acid, plastics, dyes, insecticides, photographic chemicals, and rubber. Other commercial uses include the production of vitamins, antibiotics, hormones, organic chemicals, and as a food additive. Typical concentrations of acetic acid found naturally in foods are 700 to 1200 milligrams/kg (mg/kg) in wine, up to 860 mg/kg in aged cheeses, and 2.8 mg/kg in aged cheeses. fresh orange juice.
learn more about acetic acid, visit;
brainly.com/question/16970860
#SPJ4