Answer:
1.99 parsecs.
Explanation:
We have been given that the most recently discovered system close to Earth is a pair of brown dwarfs known as Luhman 16. It has a distance of 6.5 light-years.
We know that one light year equals to 0.306601 parsecs. To convert 6.5 light-years to parsecs, we will multiply 0.306601 by 6.5.



Therefore, Luhman 16 is approximately 1.99 parsecs away from the Earth.
There are two forces at play:
- The gravitational force acting downward due to the mass of the bucket and the water that it contains.
- The upward force that your hand exerts on the bucket.
If the magnitude of the force your hand exerts on the bucket equals the magnitude of the gravitational force, the bucket is in static equilibrium. That means the bucket is not moving and the forces acting on it balance each other out, making the net force 0.
Having 0 net force means the bucket doesn't undergo any acceleration, or change in motion.
Answer:
m = 9795.9 kg
Explanation:
v = 35 m/s
KE = 6,000,000 J
Plug those values into the following equation:

6,000,000 J = (1/2)(35^2)m
---> m = 9795.9 kg
Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.
Всяко действие има равно по големина и противоположно по посока противодействие.