The answer is c it is Carbon Dioxide
Answer:
21.5 g.
Explanation:
Hello!
In this case, since the reaction between the given compounds is:

We can see that according to the law of conservation of mass, which states that matter is neither created nor destroyed during a chemical reaction, the total mass of products equals the total mass of reactants based on the stoichiometric proportions; in such a way, we first need to compute the reacted moles of Li3P as shown below:

Now, the moles of Li3P consumed by 15 g of Al2O3:

Thus, we infer that just 0.29 moles of 0.73 react to form products; which means that the mass of formed products is:

Therefore, the total mass of products is:

Which is not the same to the reactants (53 g) because there is an excess of Li₃P.
Best Regards!
A. A group of related objects that do not send out or receive feedback and cannot modify themselves
Explanation:
An open-loop system is a a group of related objects or systems that cannot send out or receive feedback and modify themselves.
- It is a non-feedback system.
- In this system, the output control system has no effect on whatever input that is fed into the system.
- Output and input in such systems are independent of one another.
- The input and output has no control whatever on each other.
learn more:
Computer programs brainly.com/question/9409412
#learnwithBrainly
Answer:
14.8 × 10²³ molecules
Explanation:
Given data:
Mass of sulfuric acid = 240 g
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Number of moles of sulfuric acid
<em>Number of moles = mass/ molar mass</em>
Number of moles = 240 g/ 98 g/mol
Number of moles = 2.45 mol
Number of molecules:
1 mole = 6.022 × 10²³ molecules
2.45 × 6.022 × 10²³ molecules
14.8 × 10²³ molecules