Its doesn't dissolve in water!
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Answer:
Hola Amigo! Here's Ur Answer :D
Explanation:
The chemical reaction we are most familiar with is that of melting: sugar decomposes at a temperature ranging between 184 and 186°C. This is a very recent discovery we owe to a team of researchers in Illinois. Basically, when we heat sucrose gently, this produces a phenomenon known as “ apparent melting ”.
Happy to Help! :D
The final destination to where some of the electrons go to at the end of cellular respiration would be D. Oxygen. Assuming that this aerobic cellular respiration, the final electron acceptor is that of oxygen.
I think the answer would be that vegetable oil is a better conductor of heat than water.