Answer:
Explanation:
Given that,
The volume of the balloon is
V = 440 × 10³ m³
Buoyant force F?
Given the density of the surrounding to be 2.58 kg/m³
ρ = 2.58 kg/m³
The buoyant force is the weight of water displaced and it is calculated using
F_b = ρVg
Where
F_b is buoyant force
ρ is density
V is the volume of the liquid displace.
g is the acceleration due to gravity
Then,
F_b = ρVg
F_b = 2.58 × 440 × 10³ × 9.81
F_b = 1.1 × 10^7 N
Answer:
0.12 K
Explanation:
height, h = 51 m
let the mass of water is m.
Specific heat of water, c = 4190 J/kg K
According to the transformation of energy
Potential energy of water = thermal energy of water
m x g x h = m x c x ΔT
Where, ΔT is the rise in temperature
g x h = c x ΔT
9.8 x 51 = 4190 x ΔT
ΔT = 0.12 K
Thus, the rise in temperature is 0.12 K.
By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Q = mcΔT
<span>q = 55.8g x 0.450J/gC x 23.5C </span>
<span>q = 590. J ................ to three significant digits
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
Amplitude will be equal to 0.091 m
Explanation:
Given mass of the slits = 41 gram = 0.041 kg
Frequency f = 1.65 Hz
So angular frequency
Angular frequency is equal to
Squaring both side
k = 4.40 N/m
For vertical osculation
A = 0.091 m
So amplitude will be equal to 0.0391 m