Answer:
[H+] = 1.66 x 
Explanation:
To find the [H+] concentration of a solution, we can use the formula:
![[H+] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-pH%7D)
Let's plug in the pH.
![[H+] = 10^{-3.78}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-3.78%7D)
Evaluate the exponent.
[H+] = 1.66 x 
Hope this helps!
<h2>Answer:</h2>
The correct answer is option B which is neutron absorbing material.
<h3>Explanation:</h3>
- In nuclear reactors, uranium absorbs a neutron, broke into two nuclei and releasing 3 more neutrons and energy. These neutrons further absorbed by other uranium atoms.
- Control rods are used to control the fission reaction in nuclear reactors by absorbing neutrons.
- Hence the material used in control rods is neutron absorbing material.
Answer:
Nonpolar covalent bond
Explanation:
when carbon atoms bonds to its self it form a nonpolar covalent bond
Answer:
pH before addition of KOH = 4.03
pH after addition of 25 ml KOH = 7.40
pH after addition of 30 ml KOH = 7.57
pH after addition of 40 ml KOH = 8.00
pH after addition of 50 ml KOH = 10.22
pH after addition 0f 60 ml KOH = 12.3
Explanation:
pH of each case in the titration given below
(6) After addition of 60 ml KOH
Since addition of 10 ml extra KOH is added after netralisation point.
Concentration of solution after addition 60 ml KOH is calculated by
M₁V₁ = M₂V₂
or, 0.23 x 10 = (50 + 60)ml x M₂
or M₂ = 0.03 Molar
so, concentration of KOH = 0.03 molar
[OH⁻] = 0.03 molar
pOH = 0.657
pH = 14 - 0.657 = 13.34