1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
8

Solve this question plz

Physics
1 answer:
Romashka-Z-Leto [24]3 years ago
3 0
The answer is in the image.

You might be interested in
PART ONE
stira [4]

Answer:

3.64×10⁸ m

3.34×10⁻³ m/s²

Explanation:

Let's define some variables:

M₁ = mass of the Earth

r₁ = r = distance from the Earth's center

M₂ = mass of the moon

r₂ = d − r = distance from the moon's center

d = distance between the Earth and the moon

When the gravitational fields become equal:

GM₁m / r₁² = GM₂m / r₂²

M₁ / r₁² = M₂ / r₂²

M₁ / r² = M₂ / (d − r)²

M₁ / r² = M₂ / (d² − 2dr + r²)

M₁ (d² − 2dr + r²) = M₂ r²

M₁d² − 2dM₁ r + M₁ r² = M₂ r²

M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0

d² − 2d r + (1 − M₂/M₁) r² = 0

Solving with quadratic formula:

r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)

When we plug in the values, we get:

r = 3.64×10⁸ m

If the moon wasn't there, the acceleration due to Earth's gravity would be:

g = GM / r²

g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²

g = 3.34×10⁻³ m/s²

4 0
3 years ago
An object moving at a velocity of 32 m/s slows to a stop in 4 seconds. What was its acceleration
Leya [2.2K]

Answer:

8

Explanation:

Because you divide 32/4 which gives you 8.

6 0
3 years ago
NEED HELP ASAP, ILL GIVE YOU BRAINLIEST IF CORRECT (30POINTS)
Vera_Pavlovna [14]

Answer:

the bar is the top and bottem. the nucleas in the middle and the Spiral arm is the last space

Explanation:

5 0
3 years ago
A long, straight wire lies in the plane of a circular coil with a radius of 0.018 m. the wire carries a current of 5.6 a and is
iris [78.8K]
(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the  coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.

(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to
\Phi = BA \cos \theta
where \theta is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case \theta=90^{\circ} and so the cosine is zero, therefore the net flux is zero.
5 0
3 years ago
A vertical spring has a spring constant of 2900 N/m. The spring is compressed 80 cm and a 8 kg spider is placed on the spring. T
Serga [27]

Answer:

a)  k_{e} = 928 J , b)U = -62.7 J , c) K = 0 , d) Y = 11.0367 m,  e)  v = 15.23 m / s  

Explanation:

To solve this exercise we will use the concepts of mechanical energy.

a) The elastic potential energy is

      k_{e} = ½ k x²

      k_{e} = ½ 2900 0.80²

      k_{e} = 928 J

b) place the origin at the point of the uncompressed spring, the spider's potential energy

     U = m h and

     U = 8 9.8 (-0.80)

     U = -62.7 J

c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also

      K = ½ m v²

      K = 0

d) write the energy at two points, maximum compression and maximum height

     Em₀ = ke = ½ m x²

     E_{mf} = mg y

     Emo = E_{mf}

     ½ k x² = m g y

     y = ½ k x² / m g

     y = ½ 2900 0.8² / (8 9.8)

     y = 11.8367 m

As zero was placed for the spring without stretching the height from that reference is

     Y = y- 0.80

     Y = 11.8367 -0.80

     Y = 11.0367 m

Bonus

Energy for maximum compression and uncompressed spring

     Emo = ½ k x² = 928 J

     E_{mf}= ½ m v²

     Emo = E_{mf}

     Emo = ½ m v²

      v =√ 2Emo / m

     v = √ (2 928/8)

     v = 15.23 m / s

8 0
3 years ago
Other questions:
  • The number of students in a cafeteria is modeled by the function p that satisfies the logistic differential equation dp/dt = 1/2
    8·2 answers
  • an apple in a tree has a gravitational potential energy of 175J and a mass of 0.36g . how high from the ground is the apple
    14·1 answer
  • A 3.00-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. (a) Determ
    9·1 answer
  • how does electromagnetism effect the function of a generator (using magnetism to produce electrical energy)
    12·1 answer
  • Arrange the following kinds of electromagnetic radiation in order of increasing wavelength: infrared, green light, red light, ra
    6·1 answer
  • You are on a train going north and you see a car going north too, but it appears to be heading backwards, why?
    9·1 answer
  • What are the five basic postulates of kinetic-molecular theory?
    12·1 answer
  • SPEED AND VELOCITY<br> Plz someone help
    12·1 answer
  • Heat naturally flows from an object that has a _______________ temperature to an object that has a _______________ temperature.
    11·2 answers
  • Howkim has two magnetic first he put gthem beside
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!