When it comes to this equation, I always stick to good ol' momma bears solutions! Tell that boy to put the rock down, rocks are dangerous!!
From- MommaBoi101
Answer:
0.53 quart
Explanation:
The volume expansion of the coolant is gotten from ΔV = VγΔθ where ΔV = change in volume of the coolant, V = initial volume of coolant = 15 quart, γ = coefficient of volume expansion of coolant = 410 × 10⁻⁶ /°C and Δθ = temperature change = θ₂ - θ₁ where θ₁ = initial temperature of coolant = 6 °C and θ₂ = final temperature of coolant = 92 °C. So, Δθ = θ₂ - θ₁ = 92 °C - 6 °C = 86 °C
Since, ΔV = VγΔθ
substituting the values of the variables into the equation, we have
ΔV = VγΔθ
ΔV = 15 × 410 × 10⁻⁶ /°C × 86 °C
ΔV = 528900 × 10⁻⁶ quart
ΔV = 0.528900 quart
ΔV ≅ 0.53 quart
Since the change in volume of the coolant equals the spill over volume, thus the overflow from the radiator will spill into the reservoir when the coolant reaches its operating temperature of 92 °C is 0.53 quart.
Answer:
9.60 m/s
Explanation:
The escape speed of an object from the surface of a planet/asteroid is given by:

where
G is the gravitational constant
M is the mass of the planet/asteroid
R is the radius of the planet/asteroid
In this problem we have
is the density of the asteroid
is the volume
So the mass of the asteroid is

The asteroid is approximately spherical, so its volume can be written as

where R is the radius. Solving for R,
![R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3(3.09\cdot 10^{12} m^3)}{4\pi}}=9036 m](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.09%5Ccdot%2010%5E%7B12%7D%20m%5E3%29%7D%7B4%5Cpi%7D%7D%3D9036%20m)
Substituting M and R inside the formula of the escape speed, we find:

You can’t just do this tm u have to do it now
Answer:
The momentum makes it worse.
Explanation:
The momentum of vehicles running at faster speeds is very high and causes a lot of damage to the vehicles.