1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
3 years ago
6

A vertical spring has a spring constant of 2900 N/m. The spring is compressed 80 cm and a 8 kg spider is placed on the spring. T

he spring is then released shooting the spider up into the air. Of course the giant spider lands on Ms. Muffet while eating her candy and scares Ms. Muffet away. Okay, okay it actually ate her. (a) How much energy is stored in the compressed spring? 928 J (b) How much potential energy did the spider initially have while sitting on the spring? -62.72 J (c) What was the initial kinetic energy of the spider before the spring is released? 0 J (d) How high above the ground does the spider shoot before falling back to earth? 11.0367 m BONUS: What is the maximum speed of the spider during this process?
Physics
1 answer:
Serga [27]3 years ago
8 0

Answer:

a)  k_{e} = 928 J , b)U = -62.7 J , c) K = 0 , d) Y = 11.0367 m,  e)  v = 15.23 m / s  

Explanation:

To solve this exercise we will use the concepts of mechanical energy.

a) The elastic potential energy is

      k_{e} = ½ k x²

      k_{e} = ½ 2900 0.80²

      k_{e} = 928 J

b) place the origin at the point of the uncompressed spring, the spider's potential energy

     U = m h and

     U = 8 9.8 (-0.80)

     U = -62.7 J

c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also

      K = ½ m v²

      K = 0

d) write the energy at two points, maximum compression and maximum height

     Em₀ = ke = ½ m x²

     E_{mf} = mg y

     Emo = E_{mf}

     ½ k x² = m g y

     y = ½ k x² / m g

     y = ½ 2900 0.8² / (8 9.8)

     y = 11.8367 m

As zero was placed for the spring without stretching the height from that reference is

     Y = y- 0.80

     Y = 11.8367 -0.80

     Y = 11.0367 m

Bonus

Energy for maximum compression and uncompressed spring

     Emo = ½ k x² = 928 J

     E_{mf}= ½ m v²

     Emo = E_{mf}

     Emo = ½ m v²

      v =√ 2Emo / m

     v = √ (2 928/8)

     v = 15.23 m / s

You might be interested in
A steel bridge is 1000 m long at -20°C in winter. What is the change in length when the temperature rises to 40°C in summer? The
xenn [34]

Answer:

ΔL = 0.66 m

Explanation:

The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:

ΔL = αLΔT

where,

ΔL = Change in Length of the bridge = ?

α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹

L = Original Length of the Bridge = 1000 m

ΔT = Change in Temperature =  Final Temperature - Initial Temperature

ΔT = 40°C - (-20°C) = 60°C

Therefore,

ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)

<u>ΔL = 0.66 m</u>

6 0
3 years ago
Energy Conservation With Conservative Forces: If a spring-operated gun can shoot a pellet to a maximum height of 100 m on Earth,
crimeas [40]

Answer:

h' = 603.08 m

Explanation:

First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:

2gh = Vf² - Vi²

where,

g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)

h = height of pellet = 100 m

Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)

Vi = Initial Velocity of Pellet = ?

Therefore,

(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²

Vi = √(1960 m²/s²)

Vi = 44.27 m/s

Now, we use this equation at the surface of moon with same initial velocity:

2g'h' = Vf² - Vi²

where,

g' = acceleration due to gravity on the surface of moon = 1.625 m/s²

h' = maximum height gained by pellet on moon = ?

Therefore,

2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²

h' = (1960 m²/s²)/(3.25 m/s²)

<u>h' = 603.08 m</u>

4 0
3 years ago
Water flows straight down from an open faucet. The cross-sectional area of the faucet is 2.4 × 10-4m2 and the speed of the water
Ksenya-84 [330]

To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.

By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

v_2^2 = v_1^2 + 2gh

Where,

V_i = Velocity in each state

g= Gravity

h = Height

Our values are given as,

A_1 = 2.4*10^{-4} m^2

v_1 = 0.8 m/s

h = 0.11m

Replacing at the kinetic equation to find V_2 we have,

v_2 = \sqrt{v_1^2 + 2gh}

v_2 = \sqrt{(0.8 m/s)^2 + 2(9.80 m/s2)(0.11 m)}

v_2= 1.67 m/s

Applying the concepts of continuity,

A_1v_1 = A_2v_2

We need to find A_2 then,

A_2= \frac{A_1v_1 }{v_2}

So the cross sectional area of the water stream at a point 0.11 m below the faucet is

A_2= \frac{A_1v_1 }{v_2}

A_2= \frac{(2.4*10^{-4})(0.8)}{(1.67)}

A_2= 1.14*10^{-4} m2

Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 1.14*10^{-4} m2

8 0
3 years ago
Which statement is true about an atom and an element?
Lemur [1.5K]
"<span>An atom is the smallest unit of matter and an element is a pure substance that is made of identical atoms" is correct. Although atoms can be broken down further now, it still take a whole atom to make an element. </span>
7 0
3 years ago
An object is dropped from a height of 25 meters. At what velocity will it hit the ground?
Goryan [66]
You can use Vf^2-Vi^2 = 2ax

Vf^2 - 0 = 2(9.81)(25)

Or you can use energy

mgh = 1/2mv^2

2gh =v^2

Same thing
6 0
3 years ago
Other questions:
  • The objective lens in a microscope with a 17.0 cm long tube has a magnification of -50.0 and the eyepiece has a magnification of
    15·1 answer
  • Please help!
    5·2 answers
  • Projectile Motion
    8·1 answer
  • You notice the flagpole at school vibrating in the breeze. You count the vibrations and find that
    10·1 answer
  • Consider the interference/diffraction pattern from a double-slit arrangement of slit separation d = 6.60 um and slit width a. Th
    5·1 answer
  • What part of the plant gives sugar
    15·1 answer
  • The average distance from Earth to the Moon is 384,000 km. In the late 1960s, astronauts reached the Moon in about 3 days. How f
    12·1 answer
  • Which proportion can you use to find the value of a? (posted in this category because of bots)
    10·1 answer
  • Many college students have a mini-fridge in their dorm room. A standard mini fridge costs roughly $100, uses about 100 watts of
    8·1 answer
  • At the Earth's surface, a projectile is launched straight up at a speed of 10.0km / s. To what height will it rise? Ignore air r
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!