1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
4 years ago
6

A vertical spring has a spring constant of 2900 N/m. The spring is compressed 80 cm and a 8 kg spider is placed on the spring. T

he spring is then released shooting the spider up into the air. Of course the giant spider lands on Ms. Muffet while eating her candy and scares Ms. Muffet away. Okay, okay it actually ate her. (a) How much energy is stored in the compressed spring? 928 J (b) How much potential energy did the spider initially have while sitting on the spring? -62.72 J (c) What was the initial kinetic energy of the spider before the spring is released? 0 J (d) How high above the ground does the spider shoot before falling back to earth? 11.0367 m BONUS: What is the maximum speed of the spider during this process?
Physics
1 answer:
Serga [27]4 years ago
8 0

Answer:

a)  k_{e} = 928 J , b)U = -62.7 J , c) K = 0 , d) Y = 11.0367 m,  e)  v = 15.23 m / s  

Explanation:

To solve this exercise we will use the concepts of mechanical energy.

a) The elastic potential energy is

      k_{e} = ½ k x²

      k_{e} = ½ 2900 0.80²

      k_{e} = 928 J

b) place the origin at the point of the uncompressed spring, the spider's potential energy

     U = m h and

     U = 8 9.8 (-0.80)

     U = -62.7 J

c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also

      K = ½ m v²

      K = 0

d) write the energy at two points, maximum compression and maximum height

     Em₀ = ke = ½ m x²

     E_{mf} = mg y

     Emo = E_{mf}

     ½ k x² = m g y

     y = ½ k x² / m g

     y = ½ 2900 0.8² / (8 9.8)

     y = 11.8367 m

As zero was placed for the spring without stretching the height from that reference is

     Y = y- 0.80

     Y = 11.8367 -0.80

     Y = 11.0367 m

Bonus

Energy for maximum compression and uncompressed spring

     Emo = ½ k x² = 928 J

     E_{mf}= ½ m v²

     Emo = E_{mf}

     Emo = ½ m v²

      v =√ 2Emo / m

     v = √ (2 928/8)

     v = 15.23 m / s

You might be interested in
What happens when a resultant electric field exist in conductor​
klio [65]

Answer:

When an electric field exists in a conductor a current will flow.

This implies a voltage difference between two points on the conductor.

Electrostatics pertains to static charge distributions.

That means that an object such as a charged spherical conductor will be at the same potential (voltage) on both its outer and inner surfaces.

7 0
4 years ago
Why does it take significantly stronger magnetic and electric field strengths to move the beam of alpha particles compared with
wlad13 [49]
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.
4 0
3 years ago
Why do we use microwaves to communicate berween earth and satellites
nlexa [21]
It’s frequency is high and microwaves can pass through the atmosphere of the Earth.
7 0
3 years ago
Read 2 more answers
A diver makes 1.0 revolutions on the way from a 9.2-m-high platform to the water. Assuming zero initial vertical velocity, find
____ [38]

Answer:

Average angular velocity ≈ 4.59 rad/s

Explanation:

Using the equation of motion,

H = ut + (1/2)t² ............................ equation 1.

Where H= height, u = initial velocity(m/s), g = acceleration due to gravity(m/s²), t = time(s)  u= 0 ∴ ut =0

H =(1/2)gt².................................... equation 2.

making t² the subject of the relation in equation 2,

∴ t² = 2H/g

Where H = 9.2 m, g= 9.8 m/s

∴ t² = ( 2×9.2)/9.8

t = √(2 × 9.2/9.8) = √(18.4/9.8)

 t = 1.37 s.

The average angular velocity = θ/t

Where θ = is the number of revolution that the diver makes, t  = time

           θ = 1 rev.

Since 1 rev = 2π (rad)

           t = 1.37 s

 Average angular velocity = 2π/t

π = 3.143

 Average angular velocity = (2×3.143)/1.37 = 6.286/1.37

   Average angular velocity ≈ 4.59 rad/s

8 0
4 years ago
If the Velocity of the body<br> is increased to 3v, determine the kinetic energy
Rom4ik [11]

ANSWER; KE=5mv^2 so it is proportional to v^2.

Explanation:So if you triple the velocity you are replacing v with 3v. Then you get (3v)^2=9v^2.

7 0
3 years ago
Other questions:
  • A 49 kg pole vaulter running at 10 m/s vaults over the bar. Her speed when she is above the bar is 0.7 m/s. The acceleration of
    7·1 answer
  • Two spheres A and B of negligible dimensions and masses 1 kg and √3 kg respectively, are supported on the smooth circular surfac
    9·1 answer
  • Hunter works to fix wires and paneling. Hunter is a(n)
    15·2 answers
  • Help me slove this problem 115 divided by 2
    14·2 answers
  • How much heat will be needed to warm 187 grams of water from 10 0C to 90 0C?
    10·1 answer
  • A particle with positive charge q = 9.61 10-19 C moves with a velocity v = (5î + 4ĵ − k) m/s through a region where both a unifo
    6·2 answers
  • NASA sends an unmanned lander to test conditions on the surface of Mars. What is the magnitude of the gravitational force acting
    12·1 answer
  • How does a vector quantity differ from a scalar?
    12·2 answers
  • What acceleration did you measure from the video? Does this match the acceleration you calculated in the first step?
    13·1 answer
  • Change 1m2 in to cm2, mm2 and km2​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!