C9H20 + 14O2 --> 9CO2 + 10H2O
Convert mole to gram by multiplying the molar mass of sodium
0.500mol Na x 22.990g = 11.495g of Na
The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.
It would be 6 because of the elements
Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!