Option d: copper.
Because copper is an element, not a mixture.
Answer:
94.325 g
Explanation:
We'll begin by converting 350 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
350 mL = 350 mL × 1 L /1000 mL
350 mL = 0.35 L
Next, we shall determine the number of mole of KC₂H₃O₂ in the solution. This can be obtained as follow:
Volume = 0.35 L
Molarity of KC₂H₃O₂ = 2.75 M
Mole of KC₂H₃O₂ =?
Molarity = mole /Volume
2.75 = Mole of KC₂H₃O₂ / 0.35
Cross multiply
Mole of KC₂H₃O₂ = 2.75 × 0.35
Mole of KC₂H₃O₂ = 0.9625 mole
Finally, we shall determine the mass of KC₂H₃O₂ needed to prepare the solution. This can be obtained as illustrated below:
Mole of KC₂H₃O₂ = 0.9625 mole
Molar mass of KC₂H₃O₂ = 39 + (12×2) +(3×1) + (16×2)
= 39 + 24 + 3 + 32
= 98 g/mol
Mass of KC₂H₃O₂ =?
Mass = mole × molar mass
Mass of KC₂H₃O₂ = 0.9625 × 98
Mass of KC₂H₃O₂ = 94.325 g
Thus, the mass of KC₂H₃O₂ needed to prepare the solution is 94.325 g
<h3>
Answer:</h3>
14 milliliters
<h3>
Explanation:</h3>
We are given;
Prepared solution;
- Volume of solution as 0.350 L
- Molarity as 0.40 M
We are required to determine the initial volume of HNO₃
- We are going to use the dilution formula;
- The dilution formula is;
M₁V₁ = M₂V₂
Rearranging the formula;
V₁ = M₂V₂ ÷ M₁
=(0.40 M × 0.350 L) ÷ 10.0 M
= 0.014 L
But, 1 L = 1000 mL
Therefore,
Volume = 14 mL
Thus, the volume of 10.0 M HNO₃ is 14 mL
Answer:
hope it helped you.
Explanation:
The properties of matter that do not depend on the size or quantity of matter in any way are referred to as an intensive property of matter. Temperatures, density, color, melting and boiling point, etc., all are intensive property as they will not change with a change in size or quantity of matter.
If a force is applied but nothing happens, then it means that the forces are balanced. Being at such state, <span>equal forces are acting on an object in opposite directions. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>