Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N
Answer:

Explanation:
given data:
height of tank = 60cm
diameter of tank =40cm
accelration = 4 m/s2
suppose x- axis - direction of motion
z -axis - vertical direction
= water surface angle with horizontal surface
accelration in x direction
accelration in z direction
slope in xz plane is



the maximum height of water surface at mid of inclination is



the maximu height of wwater to avoid spilling is

= 60 - 8.2

the height requird if no spill water is 
The general lighting load for a two-story office building that measures 125 feet by 150 feet is 112, 500 sq ft.
<h3>What is lighting load?</h3>
Lighting loads are the energy used to power electric lights and they make up nearly a third of US commercial building energy use.
Lighting load = n(LW)
where;
- L is length of the building
- W is width of the building
- n is number of story building
For one story building, = 3
For two story building, n = 6
Lighting load = 6 x 125 x 150 = 112, 500 sq ft.
Learn more about lighting load here: brainly.com/question/14070748
#SPJ12
Explanation:
McLeod gauge:
It is used to measure very low pressure of gas.It measure gas pressure by the help of mercury(Hg).it measure absolute pressure of gas.
McLeod gauge on the principle of Boyle's law.Boyle's law state that ,at constant temperature the pressure of gas is directly proportional to its volume.From Boyle's law

A sample of gas is taken from vacuum then its pressure is measured by help Hg.
Answer:Decay rate constant,k = 0.00376/hr
Explanation:
IsT Order Rate of reaction is given as
In At/ Ao = -Kt
where [A]t is the final concentration at time t and [A]o is the inital concentration at time 0, and k is the first-order rate constant.
Initial concentration = 80 mg/L
Final concentration = 50 mg/L
Velocity = 40 m/hr
Distance= 5000 m
Time taken = Distance / Time
5000m / 40m/hr = 125 hr
In At/ Ao = -Kt
In 50/80 = -Kt
-0.47 = -kt
- K= -0.47 / 125
k = 0.00376
Decay rate constant,k = 0.00376/hr