Answer:
613 mg
Explanation:

Number of fargday's 
Here, I = 9.20 A
t = 10.5 min
= 10.5 x 60 seconds
So, 

= 0.0208 F
Here, 2e, 2F
2F = 1 mol of Ni

1 mol = 59 gm of Ni
0.0104 mol = 59 x0.0104 gm Ni
= 0.613 gm Ni
= (0.613 x 1000 ) mg of Ni
= 613 mg of Ni
Answer:
The law of the conservation of mass states that matter is neither created nor destroyed, only converted to other forms. Therefore, the mass never changes, even if its appearance does.
Explanation:
It’s RNA and DNA that stores and transmits genetic information
Answer:
Cathode: Ag
Anode: Br₂
Explanation:
In the cathode must occur a reduction, so it's more likely to a metal atom be in the cathode. For the metals given the reduction reactions and the potential of reduction are:
Ag⁺ + e⁻ ⇒ Ag⁰ E° = + 0.80 V
Fe⁺² + 2e⁻ ⇒ Fe⁰ E° = - 0.44 V
Al⁺³ + 3e⁻ ⇒ Al⁰ E° = -1.66 V
As the potential for Ag is the higher, the reduction will occur for it first, so in the cathode will produce Ag.
For the anode an oxidation must occurs, so the reactions for the nonmetals are:
F₂ + 2e⁻ ⇒ 2F⁻ E° = +2.87 V
Cl₂ + 2e⁻ ⇒ 2Cl⁻ E° = +1.36 V
Br₂ + 2e⁻ ⇒ 2Br⁻ E° = +1.07 V
For oxidation, the less the E°, the faster the reaction will occur, so Br₂ will be formed in the anode.