Answer:
53.5g of NH4Cl
Explanation:
First, we need to obtain the number of mole of NH4Cl. This is illustrated below:
Volume = 0.5L
Molarity = 2M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 2 x 0.5
Mole = 1mole
Now, let us convert 1mole of NH4Cl to gram. This is illustrated below:
Molar Mass of NH4Cl = 53.5g/mol
Number of mole = 1
Mass =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass = 1 x 53.5
Mass = 53.5g
Therefore, 53.5g of NH4Cl is contained in the solution.
Answer:
Lipase is an enzyme the body uses to break down fats in food so they can be absorbed in the intestines.
Explanation:
i hope this will help you :)
Answer : The number of moles present in ammonia is, 70.459 moles.
Solution : Given,
Mass of ammonia = 
Molar mass of ammonia = 17.031 g/mole
Formula used :


Therefore, the number of moles present in ammonia is, 70.459 moles.
Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.
Answer:
8.3028894e-22
Explanation:
5x10^2 atoms/1 x 1 mol/6.022x10^23