1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
3 years ago
14

Scientists and astronomers have found that in galaxies with central black holes, there are also large star formations near those

black holes. What has this led researches to conclude?
A. that star formations create black holes

B. that black holes and star formations are unrelated

C. that black holes and star formation are related

D. that black holes create star formations

This is for Astronomy not Physics but it didn't give me an Astronomy choice.
Physics
2 answers:
sattari [20]3 years ago
6 0

Answer:B

Explanation: I took the test

sweet-ann [11.9K]3 years ago
5 0

Answer:

B

Explanation:

nothing to do with black holes creating star or related

You might be interested in
A 4.30 g bullet moving at 943 m/s strikes a 730 g wooden block at rest on a frictionless surface. The bullet emerges, traveling
Ymorist [56]

Answer:

(a)2.7 m/s

(b) 5.52 m/s

Explanation:

The total of the system would be conserved as no external force is acting on it.

Initial momentum = final momentum

⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)

⇒ 730 ×v = (4054.9 - 2081.2) =1973.7

⇒v=2.7 m/s

Thus, the resulting speed of the block is 2.7 m/s.

(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

V_{COM} = \frac{m_b}{m_b+m_{bl}}v_{bi}=\frac{4.30}{4.30+730}\times 943 m/s = 5.52 m/s

Thus, the speed of the bullet-block center of mass is 5.52 m/s.

4 0
3 years ago
Two pendulum bobs have equal masses and lengths (8.100 m). bob a is initially held horizontally while bob b hangs vertically at
Karo-lina-s [1.5K]
Since both hv same mass and elsstic collision, so their velocity will exchange. Bob A will stop and bob B will move with speed of A just before the collision.

Speed will be = squreroot ( 2*g*L)

L is length of pendulum
5 0
3 years ago
Read 2 more answers
A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
andreev551 [17]

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}

Energy

\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})

m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}

Where:

m_{1}, m_{2} - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

v_{1,o}, v_{2,o} - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

v_{1}, v_{2} - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If m_{1} = 0.400\,kg, m_{2} = 0.900\,kg, v_{1,o} = +5.86\,\frac{m}{s}, v_{2,o} = 0\,\frac{m}{s}, the system of equation is simplified as follows:

2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}

13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}

Let is clear v_{1,f} in first equation:

0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}

v_{1,f} = 5.86-2.25\cdot v_{2,f}

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}

13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}

13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}

2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0

2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0

There are two solutions:

v_{2,f} = 0\,\frac{m}{s} or v_{2,f} = 3.606\,\frac{m}{s}

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: (v_{2,f} = 3.606\,\frac{m}{s})

v_{1,f} = 5.86-2.25\cdot (3.606)

v_{1,f} = -2.254\,\frac{m}{s}

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

3 0
3 years ago
Concept Simulation 20.4 provides background for this problem and gives you the opportunity to verify your answer graphically. Ho
77julia77 [94]

Answer:

The time constant is 1.049.

Explanation:

Given that,

Charge q{t}= 0.65 q_{0}

We need to calculate the time constant

Using expression for charging in a RC circuit

q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]

Where, \dfrac{t}{RC} = time constant

Put the value into the formula

0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]

1-e^{-(\dfrac{t}{RC})}=0.65

e^{-(\dfrac{t}{RC})}=0.35

-\dfrac{t}{RC}=ln (0.35)

-\dfrac{t}{RC}=-1.049

\dfrac{t}{RC}=1.049

Hence, The time constant is 1.049.

6 0
3 years ago
What number on this diagram refers to the tick marks for the dependent variable?
givi [52]

Answer:

I'm pretty sure it's 3.

Explanation:

Because if you look at your options the only that would be relevant to tick marks would be either 4 or 3. And it said in the question that we're looking for the one for the dependent variable. And the dependent variable is on the Y- Axis and the 3 is the tick marks for the y-axis. So your answer is 3.

4 0
3 years ago
Other questions:
  • A movie stunt performer is filming a scene where he swings across a river on a vine. The safety crew must use a vine with enough
    5·1 answer
  • How did ALS impact Stephen Hawking?
    5·1 answer
  • Consider a string of total length L, made up of three segments of equal length. The mass per unit length of the first segment is
    6·1 answer
  • Could you use 6.75 when measuring the<br> pencil?<br> no<br> yes
    5·2 answers
  • A projectile is fired at ????0=355.0 m/s at an angle of theta=68.4∘ , with respect to the horizontal. Assume that air friction w
    5·1 answer
  • The 1kg rock is tied to a string and swung in a circular path as shown. The 1 meter string is tied to a post, and during the mot
    8·1 answer
  • Which occurs when a warm fluid cools down?<br><br> ⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔
    13·2 answers
  • A pendulum with a length of 1 meter is released from an initial angle of 15.0° after 1000s its amplitude has been reduced by fri
    6·1 answer
  • What is the power of a 650N force that moves an object 75cm in 0.63s?​
    6·1 answer
  • I need help with one through six please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!