Power = (work or energy) / (time)
100 W = (energy) / (20 sec)
Energy = 2,000 watt-sec
<em>Energy = 2,000 J</em>
Answer:
an object sliding down hill
Explanation:
On a slope, the force applied is due to gravity. Its direction is straight down. If the object is sliding down the hill, its displacement is at an angle to the applied force. The angle of displacement will depend on the steepness of the hill.
3-m-high large tank is initially filled with water. The tank water surface is open to the atmosphere, and a sharp-edged 10-cm-diameter orifice at the bottom drains to the atmosphere through a horizontal 80-m-long pipe. If the total irreversible head loss of the system is determined to be 1.5 m, determine the initial velocity of the water from the tank. Disregard the effect of the kinetic energy correction factors.
Answer:
The final position of the ship after the given time period is 42 km West of B.
Explanation:
Given;
average velocity of the ship, v = 35 km/h
time taken for the ship to reach point D, t = 1.2 hours
The position of the ship after the given time period is calculated as follows;
x = v x t
x = (35 km/h) x 1.2 h = 42 km
x = 42 km West of B.
Therefore, the final position of the ship after the given time period is 42 km West of B.
Answer:
When the heat is heated it will be melted of ice, why it still remain at a constant temperature of 0◦ C.
Explanation:
Solution
The heat given by the heater will be used in melting of the ice, therefore the temperature will remain the same at the degree of 0◦ C.
After the ice is fully melted, the temperature of water will begin to increase with time.
Note: kindly find an attached document of the solutions with diagrams as part of this explanation