<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Electronegativity is defined as the tendency of an atom to attract the shared pair of electrons towards itself whenever a bond is formed.
This property increases as we move from left to right across a period because the number of charge on the nucleus gets increased and electrons are attracted more towards the nucleus.
This property decreases as we move from top to bottom in a group because the electrons get add up in the new shells which make them further away from the nucleus.
Thus, the correct answer is Option A.
Answer:
1. Watt stream engine
2. McCormick reaper
3. Fulton steamboat
These are the correct answers.
Have A good day!! :)
Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
The most condensed state of matter is A. Solid Matter