Answer: The bonds are intermediate between double and single bonds
Explanation:
A closer look at the diagram below shows that the bonds in sulphur IV oxide are intermediate between double and single bonds. Hence they do not have the exact bond angle of single bonds. This is why the bond angle is not exactly 120°. There are two resonance structures in the diagram that clearly show this point.
3. 4 g of a nonelectrolyte dissolved in 78. 3 g of water produces a solution. The molar mass of the solute will be 17.94.
<h3>
What is molar mass?</h3>
Molar mass of a substance is its mass in grams in per mole of a solution.
Freezing point: Freezing point of a substance is a temperature at which a liquid starts to solidify.
Depression in the freezing point can be calculated
[Depression in freezing point of pure solvent—Freezing point of solution] =[(0) - (-4.5)] °C =4.5 °C
molar mass = Number of moles of solute m / Mass of solvent in Kg
3.4g / M x 1/ 0.0783 kg = 43.42
Substitute AT by 4.5°C , Kr by 1.86 °C/m, and m by 43.42 m in equation (1) as follows:
1.86 x 43.42 / 4.5 = 17.94
Therefore, molar mass of solute to be 17.94.
To learn more about molar mass, refer to the link:
brainly.com/question/22997914
#SPJ4
A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.