The amount of grams that are in 2.3 moles of N = 32.223 or 32/100
Because there are 14.01 grams per mile of nitrogen atoms.
So…
14.01 x 2.3= 32.223
Hope this helps :)
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Jinx kxknxbxbxbjxj dbdbcj
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.