1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
6

A 1.05 kg block slides with a speed of 0.865 m/s on a frictionless horizontal surface until it encounters a spring with a force

constant of 457 N/m . The block comes to rest after compressing the spring 4.15 cm.Find the spring potential energy, U, the kinetic energy of the block, k, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, (e) 4.00 cm.
Physics
1 answer:
djyliett [7]3 years ago
4 0

Answer:

a) U = 0 J    

k = 0.393 J

E = 0.393 J

b) U = 0.0229J

k = 0.370 J

E = 0.393 J

c) U = 0.0914 J

k = 0.302 J

E = 0.393 J

d) U = 0.206 J

k = 0.187 J

E = 0.393 J

e) U = 0.366 J

k = 0.027 J

E = 0.393 J

Explanation:

Hi there!

The equations of kinetic energy and elastic potential energy are as follows:

k = 1/2 · m · v²

U = 1/2 · ks · x²

Where:

m = mass of the block.

v = velocity.

ks = spring constant.

x = displacement of the string.

a) When the spring is not compressed, the spring potential energy will be zero:

U = 1/2 · ks · x²

U = 1/2 · 457 N/m · (0 cm)²

U = 0 J

The kinetic energy of the block will be:

k = 1/2 · m · v²

k = 1/2 · 1.05 kg · (0.865 m/s)²

k = 0.393 J

The mechanical energy will be:

E = k + U = 0.393 J + 0 J = 0.393 J

This energy will be conserved, i.e., it will remain constant because there is no work done by friction nor by any other dissipative force (like air resistance). This means that the kinetic energy will be converted only into spring potential energy (there is no thermal energy due to friction, for example).

b) The spring potential energy will be:

U = 1/2 · 457 N/m · (0.01 m)²

U = 0.0229 J

Since the mechanical energy has to remain constant, we can use the equation of mechanical energy to obtain the kinetic energy:

E = k + U

0.393 J = k + 0.0229 J

0.393 J - 0.0229 J = k

k = 0.370 J

c) The procedure is now the same. Let´s calculate the spring potential energy with x = 0.02 m.

U = 1/2 · 457 N/m · (0.02 m)²

U = 0.0914 J

Using the equation of mechanical energy:

E = k + U

0.393 J = k + 0.0914 J

k = 0.393 J - 0.0914 J = 0.302 J

d) U = 1/2 · 457 N/m · (0.03 m)²

U = 0.206 J

E = 0.393 J

k = E - U = 0.393 J - 0.206 J

k = 0.187 J

e) U = 1/2 · 457 N/m · (0.04 m)²

U = 0.366 J

E = 0.393 J

k = E - U = 0.393 J - 0.366 J = 0.027 J.

You might be interested in
A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
Artyom0805 [142]

Answer: The angle between the wire segment and the magnetic field 66.42°

Explanation:

Please see the attachment below

8 0
3 years ago
Read 2 more answers
An upright spring with a 96g mass on it is compressed 2 cm. When
Alexeev081 [22]

Answer:

I only know answer A and it's 2825.28 N/m, with rounding it's 2825.5

Explanation:

Use the m*g*h=1/2*k*x^2 equation

96*9.81*60=1/2*k*2^2

5650.56=2k

5650.56/2=2825.28N/m

8 0
3 years ago
The human ear canal is, on average, 2.5cm long and aids in hearing by acting like a resonant cavity that is closed on one end an
Troyanec [42]

Answer:

3400 Hz

Explanation:

We know that

1 cm = 0.01 m

L = Length of the human ear canal = 2.5 cm = 0.025 m

V = Speed of sound = 340 ms⁻¹

f = First resonant frequency

The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

f = \frac{(2n - 1)V}{4L}

for first resonant frequency, we have n = 1

Inserting the values

f = \frac{(2(1) - 1) 340}{4(0.025)}

f = \frac{340}{4(0.025)}

f = 3400 Hz

4 0
3 years ago
Can someone please help me ASAP!
Artist 52 [7]
I’m not 100% sure but i think it’s A because if you divide the speed by the time you get 2 and also all the other answer choices don’t make any sense!
3 0
3 years ago
Aluminum oxide can be produced during rocket launches. Show that the sum of positive and negative charges in a unit of Al2O3 equ
Triss [41]

Answer:

The sum of positive and negative charges in a unit of Al2O3 equals zero.

Aluminium has a charge of +3 while Oxygen has a charge of -2 on each ion.

Al203 has 2 Al atoms and 3 O atoms.

Charge on Al2O3 = 2(charge on Al ion) + 3(charge on O ion)

= 2(3) + 3(-2)

= 6 - 6

= 0

Explanation:

Aluminium has 3 electrons in the outermost shell and has the tendency to lose those 3 electrons to form a positive ion and have a complete outermost shell.

Whereas, Oxygen has 6 electrons in the outermost and has the tendency to accept two more electrons to form a negative ion and have a complete outermost shell.

4 0
3 years ago
Other questions:
  • If you throw two bowling balls up, each with different mass, does the lightest one go the highest? Why(include the factor of dra
    7·1 answer
  • What are two main factors that affect how quickly a coastline erodes?
    14·1 answer
  • how does the tilt of earths axis affect the number of daylight hours and the temperature of a location on earth ?
    12·1 answer
  • A good thesis statement does all of the following
    13·2 answers
  • A driver traveling at 40 m/s slams on his brakes the vehicle completely stops in five seconds how far to the vehicle go while st
    8·2 answers
  • Which of the following is the primary function of groundwater?
    9·2 answers
  • Which statement is true? A) Cells come in different shapes, but are all about the same size—very, very small. B) Cells come in di
    10·1 answer
  • The photograph shows part of the Great Plains of North America. How do
    7·1 answer
  • The frequency, or number of waves that pass a given point per second, of
    8·1 answer
  • What is a sea breeze ?<br>​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!