Answer:
A saturated solution
Explanation:
A saturated solution is one that contains the most amount of solute that can be dissolved in it at a given temperature
An example of a saturated solution is carbonated water, which readily gives off bubbles of carbon dioxide gas from areas within the solution to the region above the top surface of the gas in liquid solution
A saturation solution of salt in water can be created by continuing to dissolve salt in a given amount of water until it can no longer dissolve any more salt. However, heating the saturated salt solution, increases the amount of salt that can be dissolved.
Therefore, a solution that contains all of the solute it can normally hold at a given temperature is <u>a saturated solution</u>
Your answer will be (B) - intense pressure.
Work done = 0.5*m*[(v2)^2 - (v1)^2]
where m is mass,
v2 and v1 are the velocities.
Given that m = 1.50 x 10^3 kg, v2 = -15 m/s (decelerates), v1 = 25 kg,
Work done = 0.5 * 1.50 x 10^3 * ((-15)^2 - 25^2) = 3 x 10^5 joules
Just ignore the negative value for the final result because work is a scalar quantity.
Answer:
The longest wavelength of light is 666.7 nm
Explanation:
The general form of the grating equation is
mλ = d(sinθi + sinθr)
where;
m is third-order maximum = 3
λ is the wavelength,
d is the slit spacing (m/slit)
θi is the incident angle
θr is the diffracted angle
Note: at longest wavelength, sinθi + sinθr = 1
λ = d/m
d = 1/500 slits/mm
λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm
Therefore, the longest wavelength of light is 666.7 nm
Answer:
The maintenance of fluid balance during exercise. Sodium also promotes retention of ingested fluids and leads to an increased plasma volume response during rehydration. The primary goal of supplementation should be considered, fluid vs carbohydrate provision, and the beverage composition altered accordingly.