Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
O C. Light energy
Explanation:
it conducts energy in it and is an energy itself.
Answer:
The acceleration of the wagon is 3 m/s².
To calculate the acceleration of the wagon, we use the formula below.
Formula:
F = ma............. Equation 1
Where:
F = horizontal Force
m = mass of the wagon
a = acceleration of the wagon.
make a the subject of the equation
a = F/m.............. Equation 2
From the question,
Given:
F = 30 N
m = 10 kg
Substitute these values into equation 2
a = 30/10
a = 3 m/s²
Hence, the acceleration of the wagon is 3 m/s².
<span>10 inches
You are at risk of serious injury if you sit less than 10 inches away from the steering wheel, because of the speed and force the airbag deploys at. This is also part of the reason why driving instructors now instruct you to hold the steering wheel from the lower parts, rather than the top, which can cause your thumbs to break if the air bag deploys.</span>