Answer:
It depends on where the temperature is dropping, in which body so to speak. Generally, the temperature adapts to the two bodies, for example if a hot piece of metal meets a cold one, the two will continue until they are at an equal temperature, an intermediate temperature.
Answer:
Answered
Explanation:
The girl whirling the ball should let go off ball when the ball is at a position such that tangent to the circle is in the direction of the target.
the tangent at any point in a circular path indicates the direction of velocity at that point. And the moment when the centripetal force is removed the ball will follow the tangential path at that moment.
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
During the collision between two balls on the pool table there is no external force along the line of collision between them
Since there is no external force on it so here we can say

here we have

so we can say

since there is no external force so we can say during the collision the momentum of two balls will remain conserved