Answer:
v = 26.7 mph
Explanation:
During the first 5 hours, at a constant speed of 20 mph, we find the total displacement to be as follows:
Δx₁ = v₁*t₁ = 20 mph*5 h = 100 mi
Assuming we can neglect the displacement during the speeding up from 20 to 60 mph, we can find the the total displacement at 60 mph as follows:
Δx₂ = v₂*t₂ = 60 mph*1 h = 60 mi
So, the total displacement during all the trip wil be:
Δx = Δx₁ + Δx₂ = 100 mi + 60 mi = 160 mi
So we can find the the average velocity during the 6-hour period, applying the definition of average velocity, as follows:
v = Δx / Δt = 160 mi / 6 h = 26.7 mph
The frequency of the wave will not change. Since the change in medium doesn't affect the source of the waves, the frequency of those waves do not change.
Hope this helps! :)
Answer:
<h2>3 m/s^2</h2>
Explanation:
Step one:
given
Mass m= 4kg
Force F= 12N
Required
Acceleration the relation between force, acceleration, and mass is Newton's first equation of motion, which says a body will continue to be at rest or uniform motion unless acted upon by an external force
F=ma
a=F/m
a=12/4
a=3 m/s^2