Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Work = Force times Distance
W = Fd
Given W = 750J, F = 125N;
750 = 125d
Solving for d:
d = 750/125
d = 6
The box moved a distance of 6 meters.
Power = (work or energy) / (time)
100 W = (energy) / (20 sec)
Energy = 2,000 watt-sec
<em>Energy = 2,000 J</em>
The actual question should be did the sound waves escape room?
Yes they can escape the room
- Sound always needs a medium to travel through
- If you close the room form all where that even air can't go outside you will be able to hear no sound coming from room .