Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4
Modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
<h3>What is modeling?</h3>
A model is a representation of reality. We know that a model could help us to recreate reality in a manner that we could be able to relate fully with it. A model could be used also a means of explanation.
The atomic models that we have usually help us to understand more abut the atom. Therefore, modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
Learn more about modelling the atom:brainly.com/question/1596638
#SPJ1
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Potential energy is energy stored in an object. kinetic energy is energy of motion
Taking into account the definition of molarity, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>This case</h3>
In this case, you have:
- number of moles= 70 g×
= 0.7143 moles, where 98 g/mole os the molar mass of H₂SO₄ - volume= 0.28 dm³= 0.28 L (being 1 dm³= 1 L)
Replacing in the definition of molarity:

Solving:
<u><em>Molarity= 2.5510 </em></u>
Finally, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224
#SPJ1