Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 
They go in the boxes in this order:
density
2.meter
3.matter
4.hypothesis
5.control
6.kilogram
Answer:
The power will remain the same for a particular load as we are not changing the load. so if we increase the voltage, the current will decrease to make the net power consumed by the load same as before. If we increase the current, the voltage will decrease for making the power same. The power will only change when we changes the load.
Explanation:
1. The Egg Drop.
2. The Car down a ramp.
3. Maybe an Airplane race with things on it.