Answer:
The mole fraction of N₂ is 0.26.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
PA = XA * PT
In this case:
- PA= PN₂= 300 torr
- XA=XN₂= ?
- PT= 1.50 atm= 1140 torr (being 1 atm= 760 torr)
Replacing:
300 torr= XN₂*1140 torr
Solving:

XN₂= 0.26
<u><em>The mole fraction of N₂ is 0.26.</em></u>
An ionic bond is formed between lithium and bromine.
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for showing hydrogen peroxide decomposing into hydrogen and oxygen is:

1. hydrogen, 2. helium, 3. lithium, 4. beryllium, 5. boron, 6. carbon, 7. nitrogen, 8. oxygen, 9. fluorine, 10. neon