Answer:
B)
Explanation:
The electric force between charges can be determined by;
F =
Where: F is the force, k is the Coulomb's constant, is the value of the first charge, is the value of the second charge, r is the distance between the centers of the charges.
Let the original charge be represented by q, so that;
= 2q
=
So that,
F = x
= 2q x x
= x
= x
F = x
The electric force between the given charges would change by .
Answer:
<u>Question 2</u>
<u>Part (a)</u>
Chlorine: type of compound = chloride
Oxygen: type of compound = oxide
<u>Part (b)</u>
The iron reacts with water and oxygen to form rust.
A water molecule is made up of two hydrogen atoms joined to one oxygen atom: Di-hydrogen oxide.
<u>Question 3</u>
This circuit is in parallel.
The current in a parallel circuit splits into different branches then combines again before it goes back into the supply.
We are told that A₁ = 0.8 A
As the lamps have <u>equal resistance</u>, the current splits equally:
A₂ = 0.4 A
A₃ = 0.4 A
Then combines again:
A₄ = 0.8 A
The first one is Force & the second one Power.
Answer:
smaller one
Explanation:
even though he is moving quicker doesn't mean he will be packing more force in the collision
Answer:
s = 30330.7 m = 30.33 km
Explanation:
First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:
v = v₀√[T/273 k]
where,
v = speed of sound at given temperature = ?
v₀ = speed of sound at 0°C = 331 m/s
T = Given Temperature = 10°C + 273 = 283 k
Therefore,
v = (331 m/s)√[283 k/273 k]
v = 337 m/s
Now, we use the following formula to calculate the distance traveled by sound:
s = vt
where,
s = distance traveled = ?
t = time taken = 90 s
Therefore,
s = (337 m/s)(90 s)
<u>s = 30330.7 m = 30.33 km</u>