<span>We know , E = kQ/r^2 where q = charge and r is separation between point and point charge.
Now, At P, E= kQ/r^2
Since, Q can't be changed, we can do that by varying r
2E = 2kq/r^2
2E = kq/ (r/ sqrt2)^2
Hence, if we bring Q closer such that distance between P and Q becomes r/ sqrt 2, E will get doubled.</span>
<span>Tree's are vital to the eco-system, they clean the air of co2 which is important for the air and water. Tree's also stop erosion and that is an important step in keeping our water clean. Tree's filter water up through the soil with their extensive root system, making for clean water.</span>
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
P=change in E/t
Change in E=p*t
=15*3
=45
The answer is 45J.
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V
You should charge it to 1000 volts to store 1.0 J of energy.