Good evening Carolina
You could say waves are the continuous transmission of energy from one location to the next.
I hope that's help:)
Answer:
0.0675 seconds
Explanation:
From the question,
We apply newton's second law of motion
F = m(v-u)/t.................... Equation 1
Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.
make t the subject of the equation
t = m(v-u)/F................... Equation 2
Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)
Substitute these value into equation 2
t = 180(0-6.0)/-1600
t = -1080/-1600
t = 0.0675 seconds.
Answer:
true! : )
(i underlined the place where the answer is the other information is just as important but if you do not want to read it you do not have to)
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases. the greater the mass, the greater the gravitational pull. <u>gravitational pull decreases with an increase in the distance between two objects.</u> Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.
Answer:
See the explanation below.
Explanation:
This analysis can be easily deduced by means of Newton's second law which tells us that the sum of the forces or the total force on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = total force [N]
m = mass [kg]
a = acceleration [m/s²]
We must clear the acceleration value.

We see that the term of the mass is in the denominator, so that if the value of the mass is increased the acceleration decreases, since they are inversely proportional.
1 volt = 1 joule per coulomb.
Current doesn't actually pass 'through' a battery.
But if it did, then each coulomb would gain or lose 6 joules in traversing 6 volts, depending on its sign, and whether it climbed or fell.