Answer:
water flows easier in the mountains because there is less air pressure.
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Answer:
Six
Explanation:
Assuming she can only have ONE flavor in her cone
2 cone types * 3 flavors = 6 combos
Answer:
<em>a) 3.6 ft</em>
<em>b) 12.4 ft</em>
Explanation:
Distance between mirrors = 6.2 ft
difference from from the mirror you face = 1.8 ft
a) you stand 1.8 ft in front of the mirror you face.
According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,
your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>
b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.
the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,
the first image of your back will be 4.4 ft into the back mirror,
therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>