Answer:
RADIUS
==================================
PROBLEM
Mary’s bicycle wheel has a circumference of 226.08 cm². What is its radius?
SOLUTION
We can solve this problem using the circumference formula in which π stands for ( 3.14 ), C stands for circumference itself and r stands for radius.
\bold{Formula \: || \: C = 2πr}Formula∣∣C=2πr
\tt{226.08 = 2(3.14) r}226.08=2(3.14)r
'Now to find the radius,Substitute 226.08 for c which is circumference in the formula.
\begin{gathered} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{C = 2πr} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \tt{226.08 = 2(3.14)\red{r}} \\ \\ \: \: \: \: \: \: \: \: \large \tt{ \frac{226.08}{6.28} = \cancel\frac{6.28 \red{r}}{6.28} } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt\green{C = 36}}\end{gathered}
C=2πr
226.08=2(3.14)r
6.28
226.08
=
6.28
6.28r
C=36
To check:
\begin{gathered} \small\begin{array}{|c|}\hline \bold{circumference }\\ \\ \tt{C = 2πr} \\ \tt{C = 2(3.14) (36\:cm) } \\ \tt{C = 2(113.04\:cm) } \\ \underline{\tt \green{C = 226.08\:cm }} \\ \hline \end{array} \end{gathered}
circumference
C=2πr
C=2(3.14)(36cm)
C=2(113.04cm)
C=226.08cm
FINAL ANSWER
If Mary's Bicycle has a circumference of 226.08 cm then the radius is 36.
\boxed{ \tt \red{r = 36}}
r=36
==================================
#CarryOnLearning
1. 4 • (–3) • 5
so 4 x (-3) = -12 and then -12 x 5 = -60
2. (2.25 x 23) x 4
so (2.25 x 23) 51.75 and then 51.75 x4 = 207
4. 5 x 12 x (-2)
so 5 x 12 = 60 and then 60 x (-2) = -120
5. 35(26)(0) =
so 35 x 26 = 910 and then 910 x 0 = 0
2(2x-1) + 2(3x)=4x-2+6x = 10x - 2 & not <span>=10x-1</span>
Answer:
adding both equations
4x+9y=5
-4x+7y=11
+ + =+
________
0 +16y=16
y=1
putting the value of y in first eqn
4x+9×1=5
4x=5-9
4x=-4
x=-1
so the x is -1 and y is 1