The phase of inferential statistics which is sometimes considered to be the most crucial because errors in this phase are the most difficult to correct is "data gathering".
<h3>What is
inferential statistics?</h3>
Inferential statistics are frequently employed to compare treatment group differences.
Some characteristics of inferential statistics are-
- Inferential statistics compare treatments groups and make conclusions about the greater population of participants using measures from the experiment's sample of subjects.
- Inferential statistics aids in the development of explanations for a condition or phenomenon.
- It enables you to draw conclusions on extrapolations, which distinguishes it from descriptive statistics, which simply summarize the information that has been measured.
- There are numerous varieties of inferential statistics, each with its own set of research design & sample characteristics.
- To select the correct statistical test of their experiment, researchers should reference the numerous texts about experimental design and statistics.
To know more about the inferential statistics, here
brainly.com/question/4774586
#SPJ4
Answer:
719 km/hour
Step-by-step explanation:
To find the unit rate you have to divide
3595/5 = 719 km/hour
IN ORDER TO FIND THE ANSWER:
Add up two of the values. If they are greater than the third, the lengths can make up a triangle.
3 + 9 = 12
12 > 14? No
3 + 5 = 8
8 > 7? Yes
1 + 2 = 3
3 > 3? No
4 + 4 = 8
8 > 8? No
The answer would be B.
Hey, I think an image is needed to answer this question.
Answer:
Step-by-step explanation:
Here's the game plan. In order to find a point on the x-axis that makes AC = BC, we need to find the midpoint of AB and the slope of AB. From there, we can find the equation of the line that is perpendicular to AB so we can then fit a 0 in for y and solve for x. This final coordinate will be the answer you're looking for. First and foremost, the midpoint of AB:
and
Now for the slope of AB:
and
So if the slope of AB is 1/3, then the slope of a line perpendicular to that line is -3. What we are finding now is the equation of the line perpendicular to AB and going through (0, 3):
and filling in:
y - 3 = -3(x - 0) and
y - 3 = -3x + 0 and
y - 3 = -3x so
y = -3x + 3. Filling in a 0 for y will give us the coordinate we want for the x-intercept (the point where this line goes through the x-axis):
0 = -3x + 3 and
-3 = -3x so
x = 1
The coordinate on the x-axis such that AC = BC is (1, 0)