1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
2 years ago
15

What is the range of the relation?

Mathematics
1 answer:
Westkost [7]2 years ago
6 0

Answer:

c

Step-by-step explanation:

You might be interested in
What is 69 + 420 -14 + 86 - (4^2) = ?
Korolek [52]

Answer:

545

You can search for any mathematical expression

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Three assembly lines are used to produce a certain component for an airliner. To examine the production rate, a random
Katyanochek1 [597]

Answer:

a) Null hypothesis: \mu_A =\mu_B =\mu C

Alternative hypothesis: \mu_i \neq \mu_j, i,j=A,B,C

SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 =20.5  

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 =12.333  

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 =8.16667  

And we have this property  

SST=SS_{between}+SS_{within}  

The degrees of freedom for the numerator on this case is given by df_{num}=df_{within}=k-1=3-1=2 where k =3 represent the number of groups.

The degrees of freedom for the denominator on this case is given by df_{den}=df_{between}=N-K=3*6-3=15.

And the total degrees of freedom would be df=N-1=3*6 -1 =15

The mean squares between groups are given by:

MS_{between}= \frac{SS_{between}}{k-1}= \frac{12.333}{2}=6.166

And the mean squares within are:

MS_{within}= \frac{SS_{within}}{N-k}= \frac{8.1667}{15}=0.544

And the F statistic is given by:

F = \frac{MS_{betw}}{MS_{with}}= \frac{6.166}{0.544}= 11.326

And the p value is given by:

p_v= P(F_{2,15} >11.326) = 0.00105

So then since the p value is lower then the significance level we have enough evidence to reject the null hypothesis and we conclude that we have at least on mean different between the 3 groups.

b) (\bar X_B -\bar X_C) \pm t_{\alpha/2} \sqrt{\frac{s^2_B}{n_B} +\frac{s^2_C}{n_C}}

The degrees of freedom are given by:

df = n_B +n_C -2= 6+6-2=10

The confidence level is 99% so then \alpha=1-0.99=0.01 and \alpha/2 =0.005 and the critical value would be: t_{\alpha/2}=3.169

The confidence interval would be given by:

(43.333 -41.5) - 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}= 0.321

(43.333 -41.5) + 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}=3.345

Step-by-step explanation:

Previous concepts

Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".  

The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"

Part a  

Null hypothesis: \mu_A =\mu_B =\mu C

Alternative hypothesis: \mu_i \neq \mu_j, i,j=A,B,C

If we assume that we have 3 groups and on each group from j=1,\dots,6 we have 6 individuals on each group we can define the following formulas of variation:  

SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 =20.5  

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 =12.333  

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 =8.16667  

And we have this property  

SST=SS_{between}+SS_{within}  

The degrees of freedom for the numerator on this case is given by df_{num}=df_{within}=k-1=3-1=2 where k =3 represent the number of groups.

The degrees of freedom for the denominator on this case is given by df_{den}=df_{between}=N-K=3*6-3=15.

And the total degrees of freedom would be df=N-1=3*6 -1 =15

The mean squares between groups are given by:

MS_{between}= \frac{SS_{between}}{k-1}= \frac{12.333}{2}=6.166

And the mean squares within are:

MS_{within}= \frac{SS_{within}}{N-k}= \frac{8.1667}{15}=0.544

And the F statistic is given by:

F = \frac{MS_{betw}}{MS_{with}}= \frac{6.166}{0.544}= 11.326

And the p value is given by:

p_v= P(F_{2,15} >11.326) = 0.00105

So then since the p value is lower then the significance level we have enough evidence to reject the null hypothesis and we conclude that we have at least on mean different between the 3 groups.

Part b

For this case the confidence interval for the difference woud be given by:

(\bar X_B -\bar X_C) \pm t_{\alpha/2} \sqrt{\frac{s^2_B}{n_B} +\frac{s^2_C}{n_C}}

The degrees of freedom are given by:

df = n_B +n_C -2= 6+6-2=10

The confidence level is 99% so then \alpha=1-0.99=0.01 and \alpha/2 =0.005 and the critical value would be: t_{\alpha/2}=3.169

The confidence interval would be given by:

(43.333 -41.5) - 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}= 0.321

(43.333 -41.5) + 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}=3.345

7 0
3 years ago
John, Sally, and Natalie would all like to save some money. John decides that it
brilliants [131]

Answer:

Part 1) John’s situation is modeled by a linear equation (see the explanation)

Part 2)  y=100x+300

Part 3) \$12,300

Part 4) \$2,700

Part 5) Is a exponential growth function

Part 6) A=6,000(1.07)^{t}

Part 7) \$11,802.91

Part 8)  \$6,869.40

Part 9) Is a exponential growth function

Part 10) A=5,000(e)^{0.10t}    or  A=5,000(1.1052)^{t}

Part 11)  \$13,591.41

Part 12) \$6,107.01

Part 13)  Natalie has the most money after 10 years

Part 14)  Sally has the most money after 2 years

Step-by-step explanation:

Part 1) What type of equation models John’s situation?

Let

y ----> the total money saved in a jar

x ---> the time in months

The linear equation in slope intercept form

y=mx+b

The slope is equal to

m=\$100\ per\ month

The y-intercept or initial value is

b=\$300

so

y=100x+300

therefore

John’s situation is modeled by a linear equation

Part 2) Write the model equation for John’s situation

see part 1)

Part 3) How much money will John have after 10 years?

Remember that

1 year is equal to 12 months

so

10\ years=10(12)=120 months

For x=120 months

substitute in the linear equation

y=100(120)+300=\$12,300

Part 4) How much money will John have after 2 years?

Remember that

1 year is equal to 12 months

so

2\  years=2(12)=24\ months

For x=24 months

substitute in the linear equation

y=100(24)+300=\$2,700

Part 5) What type of exponential model is Sally’s situation?

we know that    

The compound interest formula is equal to  

A=P(1+\frac{r}{n})^{nt} 

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

in this problem we have  

P=\$6,000\\ r=7\%=0.07\\n=1

substitute in the formula above

A=6,000(1+\frac{0.07}{1})^{1*t}\\  A=6,000(1.07)^{t}

therefore

Is a exponential growth function

Part 6) Write the model equation for Sally’s situation

see the Part 5)

Part 7) How much money will Sally have after 10 years?

For t=10 years

substitute  the value of t in the exponential growth function

A=6,000(1.07)^{10}=\$11,802.91 

Part 8) How much money will Sally have after 2 years?

For t=2 years

substitute  the value of t in the exponential growth function

A=6,000(1.07)^{2}=\$6,869.40

Part 9) What type of exponential model is Natalie’s situation?

we know that

The formula to calculate continuously compounded interest is equal to

A=P(e)^{rt} 

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest in decimal  

t is Number of Time Periods  

e is the mathematical constant number

we have  

P=\$5,000\\r=10\%=0.10

substitute in the formula above

A=5,000(e)^{0.10t}

Applying property of exponents

A=5,000(1.1052)^{t}

 therefore

Is a exponential growth function

Part 10) Write the model equation for Natalie’s situation

A=5,000(e)^{0.10t}    or  A=5,000(1.1052)^{t}

see Part 9)

Part 11) How much money will Natalie have after 10 years?

For t=10 years

substitute

A=5,000(e)^{0.10*10}=\$13,591.41

Part 12) How much money will Natalie have after 2 years?

For t=2 years

substitute

A=5,000(e)^{0.10*2}=\$6,107.01

Part 13) Who will have the most money after 10 years?

Compare the final investment after 10 years of John, Sally, and Natalie

Natalie has the most money after 10 years

Part 14) Who will have the most money after 2 years?

Compare the final investment after 2 years of John, Sally, and Natalie

Sally has the most money after 2 years

3 0
3 years ago
graph of a function is alone that passes through the points (0,1) and (3,10) write an equation in the form y=Mx+b. For this func
nadya68 [22]

Answer:

y = 3x + 1

Step-by-step explanation:

(0,1) so that is the b

the rate of change is 9/3 so the m is 3

8 0
2 years ago
Whatt is the justification of the 2 step of the proof?
Lera25 [3.4K]

Answer:

B

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Why is rates, ratios ,and proportions important when working in the healthcare industry?
    13·1 answer
  • My question is in the picture pls help
    9·2 answers
  • Sarah and amanda each have 2 bags with 4 marbles in each .how many marbles do they have altogether?
    5·2 answers
  • Which equation can be used to find the volume of this solid?<br> 5 cm<br> 4 cm<br> 2 cm
    15·2 answers
  • Please please please please please help me!!!!!​
    7·1 answer
  • Chef Morgan’s restaurant has 24 tables. Fifteen of the tables each have one flower in a vase. The remaining tables have 5 flower
    8·2 answers
  • When a &lt; 0 in the quadratic function y = ax2 + bx + C, the graph of the quadratic function opens _____?
    8·1 answer
  • Write the sentence as an equation. added to 158 is the same as 361 Submit​
    8·1 answer
  • Need help with this question bad ​
    10·2 answers
  • Which radical is not a real number?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!