True.
Depending how accurate the graph is plotted
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
Answer:
<em>600N(downwards)</em>
Explanations
<em>600N(downwards)</em>
Mas of the person = 60kg
Acceleration due to gravity = -10m/s²
To get the earths pull on the person, we will use the Newton second law of motion;
Force = mass * acceleration;
Force = 60 * -10
Force- -600N
<em>Hence the earth gravitational pull on the person is 600N(downwards). It is downwards due to the negative sign.</em>
<em></em>
It means you can do 550 Newton Meters of work every second. Power is the rate of doing work, I hope this helps
Answer:
Strong nuclear force
Explanation:
The particles in the atom's nucleus bond together because there is a strong nuclear force between the protons and neutrons that attracts them to each other and binds together the nucleus.