Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms
Answer:
A copper wire current consists of electrons appropriately called conduction electrons.
Explanation:
This answer came from quizlet.com. I hope that this helps you and good luck!
The impulse experienced by the object is 3 N s.
<u>Explanation:</u>
Impulse is also termed as change in the momentum of the object. So, it is directly proportional to the force acting on the object and the time for which the force is acting on that object.
Thus, impulse experienced by an object is the product of force acting on the object for a given time period. So, it is the sudden influence of force on the given volume.
As the force is given as 30 N and the duration or the time is given as 0.1 seconds. Then, the impulse will be product of force with duration.
Impulse = Force × ΔTime = Force × Duration
Impulse = 30 × 0.1 = 3 N s.
Thus, the impulse experienced by the object is 3 N s.
Answer:
F = 36 N
Explanation:
Given that,
Charge, q₁ = +8 μC
Charge, q₂ = -5 μC
The distance between the charges, r = 10 cm = 0.1 m
We need to find the magnitude of the electrostatic force. The formula for the electrostatic force is given by :

So, the magnitude of the electrostatic force is 36 N.
Answer:
Science fiction novels and such.
Explanation: