<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:
the answer is helium you already know that because im in college on my way to the military next week bless me
Explanation:
The weight of the object on mars is about 80n
As the rocket is launched from the ground its height will go on increasing till it stops
So the height of rocket will be maximum when its speed becomes zero
so here we can use energy conservation theory




So it will reach upto height 7.35 m
In 60 minutes or 3600 seconds, the tip of the minute hand traverses the circumference of a circle with radius 3.00 cm, so it moves with a tangential speed of
(3.00 cm)/(3600 s) ≈ 0.00083 cm/s = 8.3 μm/s