The initial velocity of the ball is 55.125 m/s.
<h3>Initial velocity of the ball</h3>
The initial velocity of the ball is calculated as follows;
During upward motion
h = vi - ¹/₂gt²
h = vi - 0.5(9.8)(3²)
h = vi - 44.1 ----------------- (1)
During downward motion
h = vi + ¹/₂gt²
h = 0 + 0.5(9.8)(1.5)²
h = 11.025 ----------- (2)
solve (1) and (2) together, to determine the initial velocity of the ball
11.025 = vi - 44.1
vi = 11.025 + 44.1
vi = 55.125 m/s
Thus, the initial velocity of the ball is 55.125 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
Static energy
Explanation:
Think of it as a balloon rubbing against your hair, the two attractions of friction causes Static energy.
Answer:
Explanation:
All substances have characteristic physical and chemical properties. Physical properties are those that can be observed with the senses without changing the identity of the substance. Chemical properties describe how a substance can be changed into a new substance. Physical and chemical properties, such as color, density, boiling point, solubility, conductivity, and flammability, A. are always different between substances. B. depend on the amount of the substance. C. do not depend on the amount of the substance. D. have the same values for all substances.
Ask for details Follow Report by S27754738 2 hours ago
Answers
No, gravity acts equally on all objects. The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size. A flat piece of paper has an extended body and "catches" the air and falls more slowly. In a vacuum they would fall at the same rate either way.
Answer:
(a)

(b) 

Explanation:
Let us take the north direction to be the positive y-axis and the east to be positive x-axis.
First day:
25.0 km southeast, which implies
south of east. The y-component will be negative and the x-component will be positive.


Second day:
She starts off at the stopping point of last day. This time, both the y- and x-components are positive.


Therefore, total displacements:


Magnitude of displacements,

Direction,
