Mole ratio:
MgCl₂ + 2 KOH = Mg(OH)₂ + 2 KCl
2 moles KOH ---------------- 1 mole Mg(OH)₂
moles KOH ------------------- 4 moles Mg(OH₂)
moles KOH = 4 x 2 / 1
= 8 moles of KOH
molar mass KOH = 56 g/mol
mass of KOH = n x mm
mass of KOH = 8 x 56
= 448 g of KOH
hope this helps!
Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
We are given that the concentration of NaOH is 0.0003 M and are asked to calculate the pH
We know that NaOH dissociates by the following reaction:
NaOH → Na⁺ + OH⁻
Which means that one mole of NaOH produces one mole of OH⁻ ion, which is what we care about since the pH is affected only by the concentration of H⁺ and OH⁻ ions
Now that we know that one mole of NaOH produces one mole of OH⁻, 0.0003M NaOH will produce 0.0003M OH⁻
Concentration of OH⁻ (also written as [OH⁻]) = 3 * 10⁻⁴
<u>pOH of the solution:</u>
pOH = -log[OH⁻] = -log(3 * 10⁻⁴)
pOH = -0.477 + 4
pOH = 3.523
<u>pH of the solution:</u>
We know that the sum of pH and pOH of a solution is 14
pH + pOH = 14
pH + 3.523 = 14 [subtracting 3.523 from both sides]
pH = 10.477
It will explode together cause danger