Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Answer:
cell :—
•They lack a well-defined nucleus, have a nucleoid instead.
•Usually have double-stranded, circular DNA.
•Do not have mitochondria.
Eukaryotic cell :—
•Have a well-defined nucleus enclosed in the nuclear membrane.
•Have a linear double-stranded nucleus.
•Mitochondria are present.
21.4 g Al * (1 mol / 26.98 g ) * (2 mol Fe / 2 mol Al) = 0.793 mol Fe
91.3 g Fe2O3 * (1 mol / 159.69 g) * (2 mol Fe / 1 mol Fe2O3) = 1.14 mol Fe
0.793 mol Fe * (55.85 g / 1 mol) = 44.3 g Fe produced.
Answer:
the weather is raining sunning or rainbow
because of the sun its so hot
because its cold snowing
because the oceans is water you can swimming
Explanation:
that is
Answer:
Fe
Explanation:
The cell potential is:
ΔE°cell = E°red(red) - E°red(oxid)
Where, E°red(red) is the reduction potential of the substance that is reducing, and E°red(oxid) is the reduction potential of the substance that is oxidizing. For the reaction be spontaneous and happen, ΔE°cell > 0.
The reduction takes place in the cathode, which is the negative pole, and the oxidation in the anode, which is the positive pole. So, the electrons flow from the positive pole to the negative pole (anode to cathode).
Then, if the voltmeter measured a negative potential, it means that is was attached incorrectly. So, the anode is Fe.