Answer:
There’s a high need for energy storage and are very expensive. Renewable energy is also not always available because some need sun while others need wind.
Explanation:
Answer:
204g of NH3
Explanation:
The balanced equation for the reaction is given below:
N2 + 3H2 —> 2NH3
Next, we shall determine the number of mole NH3 produced by reacting 6moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 6 moles of N2 will react to produce = 6 x 2 = 12 moles of NH3.
Finally, we shall convert 12 moles of NH3 to grams. This is illustrated below:
Number of mole of NH3 = 12 moles.
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Mass of NH3 =..?
Mass = mole x molar mass
Mass of NH3 = 12 x 17
Mass of NH3 = 204g.
Therefore, 204g of NH3 will be produced from the reaction.
Use slader.com it helps with all textbook work!
Answer:
The answer is 0.023 moles of phosphorus
Explanation:
The 15-15-15 fertilizer is a fertilizer of great versatility, made with nitrogen, phosphorus and potassium, which makes it one of the fertilizers most used for fertilizer in the sowing plant, thus covering the crop requirements from planting. .
This fertilizer consists of 14.25% phosphorus pentoxide (P2O5). Therefore, we have to remove 14.25% at 10 grams of 15-15-15 fertilizer to calculate the moles of phosphorus. As follows:
Grams of P2O5 = 10 g x 0.1425 = 1.425 g
We calculate the molecular weight of phosphorus. We use the periodic table:
Phosphorus molecular weight = 2 x 30.97 = 61.94 g/mol
Now we calculate the moles of phosphorus in the fertilizer:
Phosphorus moles = 1,425 g/61.94 g/mol = 0.023 moles
Answer:
The empirical formula is SF6 (option E)
Explanation:
Step 1: Data given
Mass of sulfur = 3.21 grams
Mass of fluorine = 11.4 grams
Molar mass sulfur = 32.065 g/mol
Molar mass fluorine = 19.00 g/mol
Step 2: Calculate moles
Moles = mass /molar mass
Moles sulfur = 3.21 grams / 32.065 g/mol
Moles sulfur = 0.100 moles
Moles fluorine = 11.4 grams / 19.00 g/mol
Moles fluorine = 0.600 moles
Step 3: Calculate mol ratio
We divide by the smallest amount of moles
S: 0.100 / 0.100 = 1
F : 0.600 / 0.100 = 6
The empirical formula is SF6 (option E)